2008 SUMMARY REPORT of Third Lake Lake County, Illinois Prepared by the # LAKE COUNTY HEALTH DEPARTMENT ENVIRONMENTAL HEALTH SERVICES LAKES MANAGEMENT UNIT 3010 Grand Avenue Waukegan, Illinois 60085 **Leonard Dane** Mike Adam Kelly Deem Kathleen Paap ## TABLE OF CONTENTS | LAKE FAC | TS1 | |----------|---| | SUMMARY | Y OF WATER QUALITY2 | | SUMMARY | Y OF AQUATIC MACROPHYTES15 | | TABLES | | | Table 1. | Water quality data for Third Lake, 2005 – 20086 | | | Lake County average TSI phosphorous (TSIp) ranking 2000-200811 | | Table 3. | Aquatic plant species found in Third Lake in 200817 | | Table 4a | a. Aquatic plant species found at the 99 sampling sites on Third Lake in July, | | | 2008. The maximum depth that plants were found was 6.5 feet17 | | Table 4 | b. Distribution of rake density across all sampling sites | | Table 5. | | | | species (w/Adventives) and with native species only (native)18 | | FIGURES | | | Figure 1 | . Water quality sampling site on Third Lake, 20085 | | Figure 2 | Yearly Secchi depth averages from VLMP and LCHD records for Third Lake9 Total suspended solid (TSS) concentrations vs. Secchi depth for Third Lake, | | 8 | 2000-2008 | | Figure 4 | . Aquatic plant sampling grid that illustrates plant density on Third Lake, | | C | July 2008 | | APPENDIC | YES | | | ix A. Methods for field data collection and laboratory analyses | | 1.1 | ix B. Multi-parameter data for Third Lake in 2008 | | | ix C. Interpreting your lake's water quality data. | | | ix D. Water quality statistics for all Lake County lakes | | | ix E. Grant program opportunities | ## LAKE FACTS | Lake Name: | Third Lake | |-------------------------------------|---| | Historical Name: | Chittenden Lake | | Nearest Municipality: | Village of Third Lake | | Location: | T45N, R10E, Sections 13 and 24 | | Elevation: | 766.2 feet mean sea level | | Major Tributaries: | Mill Creek | | Watershed: | Des Plaines River | | Sub-watershed: | Mill Creek | | Receiving Waterbody: | Grandwood Park Lake | | Surface Area: | 155.5 acres | | Shoreline Length: | 2.0 miles | | Maximum Depth: | 65.4 feet | | Average Depth: | 20.5 feet | | Lake Volume: | 3123.0 acre-feet | | Lake Type: | Glacial | | Watershed Area: | 8,552.7 acres | | Major Watershed Land Uses: | Single Family and Agricultural | | Bottom Ownership: | Private, Public (Village of Third Lake, Lake
County Forest Preserve) | | Management Entities: | Village of Third Lake | | Current and Historical Uses: | Swimming, fishing, and boating. | | Description of Access: | Boat access locations are private, open to the public (with a fee), walk in access thorough LCFPD property. | Third Lake was chosen to be one of seven "sentinel" lakes in the county that the Lakes Management Unit (LMU) will monitor annually for five years, beginning with the 2005 season. This report summarizes the water quality sampling results and aquatic plant surveys conducted in 2008 on Third Lake. Similar reports have been written on data collected in 1993, 1998, 1999, 2000, 2005, 2006, and 2007 and are available from the LMU at (847) 377-8030 or on the web at (http://www.lakecountyil.gov/Health/want/LakeReports.htm). 2009 will be the final year of the annual "sentinel" lake monitoring. A comprehensive summary report detailing all five years will be completed and available for review in 2010. ## **SUMMARY OF WATER QUALITY** Water samples were collected from April through early November at the deepest point in the lake (Figure 1; Appendix A). Third Lake was sampled at three feet below the surface and three feet above the bottom (Table 1) and the samples were analyzed for various water quality parameters (Appendix C). In addition, Third Lake has participated in the Volunteer Lake Monitoring Program (VLMP) since 2001. Third Lake was thermally stratified from May through September 2008. The lake was strongly stratified from 12 feet (July) to 22 feet (May). The thermocline (the transition region between the epilimnion and the hypolimnion) remained strong until November, when turnover was taking place and water temperatures throughout the water column grew closer together. Technical problems with the compressors during the season resulted in inadequate air flow to the aerators. This was also a problem in 2007. As a result the dissolved oxygen (DO) concentrations in the epilimnion were lower than expected (Appendix B). Anoxic conditions (DO < 1 mg/L) existed from May through November in the hypolimnion. The anoxic boundary was at its shallowest in July at approximately 14 feet (26.1% of the lake volume) and deepest in May at approximately 56 feet (13.5% of the lake volume). Repairs to the compressors will be made prior to the 2009 season to ensure higher DO concentrations throughout the water column. Secchi disk depth (water clarity) averaged 4.83 feet during 2008, which was above the Lake County median of 3.12 feet (Appendix D). This was decrease from 2005 (7.83 feet), 2006 (9.44 feet), and 2007 (7.85 feet). The VLMP Secchi depth over the past seven years has averaged from 4.75 feet to 9.09 feet (Figure 2). The 2008 average was the lowest the VLMP has recorded. This could be due to the large amounts of rain that fell during the months of June and July. Water clarity is related to the amount of total suspended solids (TSS) in the water column. Decreases in the Secchi depth correspond with increases in the average TSS (Figure 3). The 2008 average epilimnetic TSS of 5.4 mg/L was an increase from the averages in 2007 (4.2 mg/L), 2006 (3.5 mg/L), and 2005 (3.6 mg/L). The 2008 average epilimnetic TSS was lower than the Lake County median of 8.2 mg/L. The increase in TSS and decrease in Secchi depth averages were caused by the rain during 2008. The Lake County Stormwater Management Commission (SMC) rain gauge in Gages Lake recorded 27.8 inches of rain from April through October which likely brought in a large pulse of nutrient rich water from the large watershed. The water level fluctuated throughout the season. The water level dropped 5.3 inches from April to May and then increase 6.6 inches to June. It then decreased 8.0 inches to July and by another 4.1 inches from to August. The water level increased again in September by 3.8 inches only to drop another 4.6 inches in November. The overall seasonal change in the lake level was a drop of 11.5 inches. A 2008 average epilimnetic total phosphorus (TP) concentration of 0.028 mg/L was down from the 2007 average of 0.35 mg/L but up from the 2006 average of 0.22 mg/L and the 2005 average of 0.019 mg/L. It was also below the county median of 0.065 mg/L. The 2008 seasonal hypolimnetic average of 0.451 mg/L was above the county median of 0.181 mg/l. This was an increase from the 2007 average of 0.399 mg/L and a significant increase from the 2006 hypolimnetic average TP of 0.175 mg/L, but below the 2005 average of 0.526 mg/L. Much of this fluctuation may have been due to environmental affects, such as rain events or water temperature. These influence the thermal stratification and turnover of the lake, and therefore vary between years. Phosphorus can be released from sediment through biological or mechanical processes, or from plant or algae as they die. In addition, more of the lake volume was anoxic than previous years due to the aerator not functioning properly, thus potentially more bottom surface area exposed to anoxic conditions. This explains why the TP concentrations were higher in the hypolimnion. Third Lake had a TN:TP ratio of 68:1 in 2008, 60:1 in 2007, and 96:1 in 2006 and 2005. This indicates the lake was phosphorus limited, which means any addition of phosphorus could result in increases in plant and algae biomass. Most lakes in Lake County are phosphorus limited. The trophic state of Third Lake based on phosphorus concentration during 2008 was eutrophic with a TSIp score of 52.4, while in 2005 and 2006 the trophic state was mesotrophic with TSIp scores of 46.6 and 48.8. Third Lake ranked 30th out of 163 lakes in Lake County based on average TP concentrations (Table 2). The Village of Third Lake adopted an ordinance banning the use of phosphorous containing fertilizers. This should help eliminate a source of phosphorous to Third Lake. The Illinois Environmental Protection Agency (IEPA) has assessment indices to classify Illinois lakes for their ability to support aquatic life and recreational uses. The guidelines consider several aspects such as water clarity, phosphorus concentrations (TSIp), and aquatic plant coverage. According to this index, Third Lake provided *Full* support of aquatic life and *Partial* support of recreational activities based on moderate macrophyte impairment. The lake provided *Partial* overall use. Third Lake continues to have high concentrations of nitrate-nitrogen from April through June. The 2008 average was 0.979 mg/L. This was a slight decrease from the 2007 average concentration was 0.991 mg/L, which was an increase from the 2006 average of 0.980 mg/L and the 2005 average of 0.820 mg/L. Beginning in 2006, due to the purchase of a new analyzer, the lab began measuring nitrogen as nitrate + nitrite (instead of just nitrate). This change in analyzing should be of little significance since nitrite is quickly converted to nitrate under oxic conditions. The majority of the nitrate-nitrogen may be entering the lake from the Avon-Fremont Drainage ditch during spring and early summer runoff. Conductivity is a measurement of water's ability to conduct electricity and is positively correlated with chloride (Cl⁻) concentration. The Lake County median conductivity for near surface samples
was 0.8195 milliSiemens/cm (mS/cm). During 2008, the average epilimnetic conductivity reading for Third Lake was 54% higher at 1.2611 mS/cm. This was an increase from 2007 (1.2371 mS/cm) but a decrease from 2006 (1.4910 mS/cm) and 2005 (1.4877 mS/cm). The hypolimnetic conductivity readings have shown a steady increase over the last four years. The 2008 average Cl⁻ concentration in Third Lake was above the Lake County median (166 mg/L), with a seasonal average of 259 mg/L. This was also an increase from 2007 (245 mg/L) but a decrease from the 2006 (312 mg/L) and 2005 (318 mg/L) average. Stormwater runoff from impervious surfaces such as roads and parking lots can deliver high concentrations of this Cl⁻ to nearby lakes and ponds, with road salts being a main source. A study done in Canada reported 10% of aquatic species are harmed by prolonged exposure to Cl⁻ concentrations greater than 220 mg/L. Additionally, shifts in algal populations were associated with Cl⁻ concentrations as low as 12 mg/l. Therefore, lakes can be negatively impacted by high Cl⁻ concentrations and it is important to keep the use of road salts to a minimum within the watershed. Proper application procedures and alternative methods can be used to keep these concentrations under control. Figure 1. Water quality sampling site on Third Lake, 2008. Table 1. Water quality data for Third Lake, 2005 – 2008 | Ī | 2008 | Epilimnion | | | | | | | | | | | | | | | |-----|--|---|---|--|--|--|--|--|---|--|--|--|---|--|--|--| | | DATE | DEPTH | ALK | TKN | NH ₃ -N | NO ₂ +NO ₃ -N | TP | SRP | Cl ⁻ | TSS | TS | TVS | SECCHI | COND | рН | DO | | - | 16-Apr | 3 | 175 | 1.09 | 1.165 | 1.660 | 0.039 | < 0.005 | 296 | 9.7 | 802 | 109 | 2.63 | 1.3910 | 8.02 | 10.90 | | | 14-May | 3 | 184 | 1.01 | < 0.1 | 1.160 | 0.044 | < 0.005 | 297 | 4.7 | 821 | 125 | 6.92 | 1.4190 | 8.39 | 9.50 | | | 11-Jun | 3 | 173 | 0.88 | < 0.1 | 2.070 | 0.042 | < 0.005 | 246 | 7.5 | 750 | 152 | 2.46 | 1.2320 | 8.24 | 7.98 | | | 09-Jul | 3 | 176 | 1.13 | < 0.1 | 0.998 | 0.023 | < 0.005 | 243 | 4.1 | 746 | 158 | 4.86 | 1.2300 | 8.74 | 8.51 | | | 13-Aug | 3 | 164 | 0.86 | < 0.1 | 0.399 | 0.019 | < 0.005 | 248 | 3.8 | 727 | 147 | 6.07 | 1.2120 | 8.60 | 8.96 | | | 10-Sep | 3 | 138 | 0.78 | < 0.1 | 0.087 | 0.020 | < 0.005 | 245 | 5.2 | 686 | 143 | 4.10 | 1.1630 | 8.59 | 9.43 | | | 05-Nov | 3 | 176 | 1.01 | 0.148 | 0.482 | 0.012 | < 0.005 | 235 | 2.7 | 732 | 141 | 6.76 | 1.1810 | 7.53 | 10.18 | | _ | | Average | 169 | 0.97 | 0.657 ^k | 0.979 | 0.028 | < 0.005 | 259 | 5.4 | 752 | 139 | 4.83 | 1.2611 | 8.30 | 9.35 | | Ī | 2007 | Epilimnion | | | | | | | | | | | | | | | | | DATE | DEPTH | ALK | TKN | NH ₃ -N | NO ₂ +NO ₃ -N | TP | SRP | Cl ⁻ | TSS | TS | TVS | SECCHI | COND | pН | DO | | | 17-Apr | 3 | 181 | 1.22 | 0.207 | 2.160 | 0.044 | 0.009 | 339 | 2.3 | 976 | 163 | 10.66 | 1.6030 | 7.85 | 11.27 | | | 16-May | 3 | 194 | 1.00 | 0.163 | 1.870 | 0.023 | < 0.005 | 336 | 2.5 | 950 | 157 | 11.48 | 1.6330 | 7.96 | 8.97 | | | 20-Jun | 3 | 160 | 1.13 | 0.100 | 1.650 | 0.028 | < 0.005 | 235 | 3.8 | 775 | 193 | 5.41 | 1.2250 | 8.11 | 6.69 | | | 18-Jul | 3 | 154 | 1.14 | < 0.1 | 0.799 | 0.043 | < 0.005 | 248 | 6.0 | 763 | 171 | 7.71 | 1.2450 | 8.54 | 8.61 | | | 15-Aug | 3 | 134 | 1.00 | < 0.1 | 0.080 | 0.041 | < 0.005 | 173 | 5.5 | 566 | 122 | 5.57 | 0.9280 | 8.24 | 8.08 | | | 19-Sep | 3 | 175 | 1.04 | < 0.1 | 0.071 | 0.048 | < 0.005 | 160 | 6.5 | 587 | 127 | 4.92 | 0.9405 | 8.30 | 10.52 | | | 24-Oct | 3 | 184 | 0.99 | 0.124 | 0.305 | 0.015 | < 0.005 | 221 | 3.1 | 695 | 116 | 9.19 | 1.0850 | 7.57 | 7.04 | | . – | | A | 1.60 | | 0 4 40k | 0.001 | 0.025 | 0 0 0 0 k | 215 | 1.0 | 750 | 150 | 7.05 | 1 2271 | 0.00 | 0.74 | | `_ | | Average | 169 | 1.07 | 0.149^{k} | 0.991 | 0.035 | 0.009^{k} | 245 | 4.2 | 759 | 150 | 7.85 | 1.2371 | 8.08 | 8.74 | | Ì | 2006 | Average
Epilimnion | 169 | 1.07 | 0.149* | 0.991 | | 0.009* | 245 | 4.2 | 759 | 150 | 7.85 | 1.23/1 | | 8.74 | | | 2006
DATE | | ALK | 1.07 | 0.149 ^x
NH ₃ -N | 0.991
NO ₂ +NO ₃ -N | 0.035 | 0.009 ^x | 245 | TSS | TS | TVS | SECCHI | COND | 8.08
pH | DO DO | | | | Epilimnion DEPTH 3 | | | | | | | | | | | | | | DO
11.44 | | | DATE | Epilimnion DEPTH 3 3 | ALK
158
167 | TKN
1.47
1.21 | NH ₃ -N | NO ₂ +NO ₃ -N
2.100
1.970 | TP | SRP
<0.005
<0.005 | Cl ⁻
334
318 | TSS
4.1
1.1 | TS | TVS | SECCHI
10.83
12.63 | COND | рН | DO
11.44
9.12 | | | DATE
12-Apr | Epilimnion DEPTH 3 3 3 3 | ALK
158
167
166 | TKN 1.47 | NH ₃ -N
0.148 | NO ₂ +NO ₃ -N
2.100 | TP
0.021 | SRP
<0.005 | Cl ⁻
334 | TSS
4.1 | TS
941 | TVS
140 | SECCHI
10.83 | COND
1.5840 | <mark>рН</mark>
7.84 | DO
11.44 | | | DATE
12-Apr
17-May | Epilimnion DEPTH 3 3 3 3 3 | ALK
158
167 | TKN
1.47
1.21 | NH ₃ -N
0.148
0.155 | NO ₂ +NO ₃ -N
2.100
1.970
1.280
0.646 | TP
0.021
0.020 | SRP
<0.005
<0.005 | Cl ⁻ 334 318 302 310 | TSS
4.1
1.1 | TS
941
911 | TVS
140
138 | SECCHI
10.83
12.63 | COND
1.5840
1.5400 | pH
7.84
8.04 | DO
11.44
9.12 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug | Epilimnion DEPTH 3 3 3 3 3 3 3 | ALK
158
167
166
140 | TKN 1.47 1.21 1.03 1.08 1.09 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 | TP 0.021 0.020 0.021 0.012 0.018 | SRP
<0.005
<0.005
<0.005 | Cl ⁻
334
318
302 | TSS
4.1
1.1
1.3 | TS
941
911
971 | TVS
140
138
229 | SECCHI 10.83 12.63 11.84 7.05 6.10 | COND
1.5840
1.5400
1.5140
1.4820
1.4810 | pH
7.84
8.04
8.47
8.74
8.73 | DO
11.44
9.12
7.71
9.26
9.41 | | | DATE 12-Apr 17-May 21-Jun 19-Jul | Epilimnion DEPTH 3 3 3 3 3 3 3 3 3 3 3 | ALK
158
167
166
140 | TKN 1.47 1.21 1.03 1.08 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 | TP 0.021 0.020 0.021 0.021 | SRP
<0.005
<0.005
<0.005
<0.005 | Cl ⁻ 334 318 302 310 | TSS
4.1
1.1
1.3
4.6 | TS
941
911
971
921 | TVS
140
138
229
191 | SECCHI
10.83
12.63
11.84
7.05 | COND
1.5840
1.5400
1.5140
1.4820 | pH
7.84
8.04
8.47
8.74
8.73
8.60 | DO
11.44
9.12
7.71
9.26 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug | Epilimnion DEPTH 3 3 3 3 3 3 3 | ALK
158
167
166
140
112
121 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 | SRP
<0.005
<0.005
<0.005
<0.005
<0.005
<0.005
0.015 | Cl ⁻ 334 318 302 310 325 306 291 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 | TS 941 911 971 921 936 838 839 | TVS 140 138 229 191 227 144 136 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 | COND
1.5840
1.5400
1.5140
1.4820
1.4810
1.4150
1.4210 | pH
7.84
8.04
8.47
8.74
8.73
8.60
7.98 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov | Epilimnion DEPTH 3 3 3 3 3 3 3 3 3 3 3 | ALK
158
167
166
140
112 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 | TP 0.021 0.020 0.021 0.012 0.018 0.023 | SRP
<0.005
<0.005
<0.005
<0.005
<0.005
<0.005 | Cl ⁻ 334 318 302 310 325 306 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 | TS
941
911
971
921
936
838 | TVS 140 138 229 191 227 144 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 | COND
1.5840
1.5400
1.5140
1.4820
1.4810
1.4150 | pH
7.84
8.04
8.47
8.74
8.73
8.60 | DO
11.44
9.12
7.71
9.26
9.41
8.93 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov | Epilimnion DEPTH 3 3 3 3 3 3 3 Average Epilimnion | ALK
158
167
166
140
112
121
157
146 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 | SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.015 0.015 ^k | Cl ⁻ 334 318 302 310 325 306 291 312 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 |
TS
941
911
971
921
936
838
839
908 | TVS 140 138 229 191 227 144 136 172 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 | COND
1.5840
1.5400
1.5140
1.4820
1.4810
1.4150
1.4210
1.4910 | pH
7.84
8.04
8.47
8.74
8.73
8.60
7.98
8.34 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE | Epilimnion DEPTH 3 3 3 3 3 3 3 Average Epilimnion DEPTH | ALK
158
167
166
140
112
121
157
146 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k NH ₃ -N | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 NO ₃ -N* | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 | SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.015 SRP | Cl ⁻ 334 318 302 310 325 306 291 312 Cl ⁻ | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 | TS
941
911
971
921
936
838
839
908 | TVS 140 138 229 191 227 144 136 172 TVS | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 SECCHI | COND
1.5840
1.5400
1.5140
1.4820
1.4810
1.4150
1.4210
1.4910 | pH
7.84
8.04
8.47
8.74
8.73
8.60
7.98
8.34 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr | Epilimnion DEPTH 3 3 3 3 3 3 3 Average Epilimnion DEPTH 3 | ALK
158
167
166
140
112
121
157
146
ALK
175 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 TKN 1.08 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k NH ₃ -N <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 NO ₃ -N* 1.710 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 TP 0.015 | SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.015 SRP <0.005 | Cl' 334 318 302 310 325 306 291 312 Cl' 303 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 TSS 3.9 | TS 941 911 971 921 936 838 839 908 TS 875 | TVS 140 138 229 191 227 144 136 172 TVS 150 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 SECCHI 8.56 | COND
1.5840
1.5400
1.5140
1.4820
1.4810
1.4150
1.4210
1.4910
COND
1.4680 | pH
7.84
8.04
8.47
8.74
8.73
8.60
7.98
8.34
pH
7.91 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26
DO
10.31 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May | Epilimnion DEPTH 3 3 3 3 3 3 3 Average Epilimnion DEPTH 3 3 3 | ALK 158 167 166 140 112 121 157 146 ALK 175 178 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 TKN 1.08 1.11 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k NH ₃ -N <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 NO ₃ -N* 1.710 1.290 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 TP 0.015 0.021 | SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.015 0.015 ^k SRP <0.005 <0.005 <0.005 | Cl' 334 318 302 310 325 306 291 312 Cl' 303 308 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 TSS 3.9 2.7 | TS 941 911 971 921 936 838 839 908 TS 875 897 | TVS 140 138 229 191 227 144 136 172 TVS 150 158 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 SECCHI 8.56 10.47 | COND
1.5840
1.5400
1.5140
1.4820
1.4810
1.4150
1.4210
1.4910
COND
1.4680
1.5090 | pH
7.84
8.04
8.47
8.74
8.73
8.60
7.98
8.34
pH
7.91
7.55 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26
DO
10.31
9.56 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May 22-Jun | Epilimnion DEPTH 3 3 3 3 3 3 3 4 Average Epilimnion DEPTH 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 | ALK 158 167 166 140 112 121 157 146 ALK 175 178 168 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 TKN 1.08 1.11 1.09 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k NH ₃ -N <0.1 <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 NO ₃ -N* 1.710 1.290 0.697 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 TP 0.015 0.021 0.019 | SRP | Cl' 334 318 302 310 325 306 291 312 Cl' 303 308 319 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 TSS 3.9 2.7 3.9 | TS 941 911 971 921 936 838 839 908 TS 875 897 918 | TVS 140 138 229 191 227 144 136 172 TVS 150 158 185 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 SECCHI 8.56 10.47 5.28 | COND
1.5840
1.5400
1.5140
1.4820
1.4810
1.4150
1.4210
1.4910
COND
1.4680
1.5090
1.5140 | pH 7.84 8.04 8.47 8.74 8.73 8.60 7.98 8.34 pH 7.91 7.55 8.00 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26
DO
10.31
9.56
8.40 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May 22-Jun 20-Jul | Epilimnion DEPTH 3 3 3 3 3 3 3 Average Epilimnion DEPTH 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | ALK 158 167 166 140 112 121 157 146 ALK 175 178 168 136 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 TKN 1.08 1.11 1.09 1.04 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k NH ₃ -N <0.1 <0.1 <0.1 <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 NO ₃ -N* 1.710 1.290 0.697 0.123 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 TP 0.015 0.021 0.019 0.015 | SRP | Cl ⁻ 334 318 302 310 325 306 291 312 Cl ⁻ 303 308 319 331 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 TSS 3.9 2.7 3.9 5.5 | TS 941 911 971 921 936 838 839 908 TS 875 897 918 904 | TVS 140 138 229 191 227 144 136 172 TVS 150 158 185 168 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 SECCHI 8.56 10.47 5.28 5.18 | COND 1.5840 1.5400 1.5140 1.4820 1.4810 1.4150 1.4210 1.4910 COND 1.4680 1.5090 1.5140 1.5080 | pH 7.84 8.04 8.47 8.74 8.73 8.60 7.98 8.34 pH 7.91 7.55 8.00 8.11 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26
DO
10.31
9.56
8.40
8.58 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May 22-Jun 20-Jul 17-Aug | Epilimnion DEPTH 3 3 3 3 3 3 3 4 4verage Epilimnion DEPTH 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | ALK 158 167 166 140 112 121 157 146 ALK 175 178 168 136 118 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 TKN 1.08 1.11 1.09 1.04 0.98 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k NH ₃ -N <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 NO ₃ -N* 1.710 1.290 0.697 0.123 <0.05 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 TP 0.015 0.021 0.019 0.015 0.024 | SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.015 0.015 SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | Cl' 334 318 302 310 325 306 291 312 Cl' 303 308 319 331 328 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 TSS 3.9 2.7 3.9 5.5 4.3 | TS 941 911 971 921 936 838 839 908 TS 875 897 918 904 867 | TVS 140 138 229 191 227 144 136 172 TVS 150 158 185 168 168 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 SECCHI 8.56 10.47 5.28 5.18 5.28 | COND 1.5840 1.5400 1.5140 1.4820 1.4810 1.4150 1.4210 1.4910 COND 1.4680 1.5090 1.5140 1.5080 1.4730 | pH 7.84 8.04 8.47 8.74 8.73 8.60 7.98 8.34 pH 7.91 7.55 8.00 8.11 8.78 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26
DO
10.31
9.56
8.40
8.58
8.51 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May 22-Jun 20-Jul 17-Aug 21-Sep | Epilimnion DEPTH 3 3 3 3 3 3 3 4 4verage Epilimnion DEPTH 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | ALK 158 167 166 140 112 121 157 146 ALK 175 178 168 136 118 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 TKN 1.08 1.11 1.09 1.04 0.98 0.82 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k NH ₃ -N <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 NO ₃ -N* 1.710 1.290 0.697 0.123 <0.05 <0.05 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 TP 0.015 0.021 0.019 0.015 0.024 0.021 | SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.015 0.015 SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | Cl ⁻ 334 318 302 310 325 306 291 312 Cl ⁻ 303 308 319 331 328 323 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 TSS 3.9 2.7 3.9 5.5 4.3 3.1 | TS 941 911 971 921 936 838 839 908 TS 875 897 918 904 867 846 | TVS 140 138 229 191 227 144 136 172 TVS 150 158 185 168 168 171 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 SECCHI 8.56 10.47 5.28 5.18 5.28 8.40 | COND 1.5840 1.5400 1.5140 1.4820 1.4810 1.4150 1.4210 1.4910 COND 1.4680 1.5090 1.5140 1.5080 1.4730 1.4440 | pH 7.84 8.04 8.47 8.74 8.73 8.60 7.98 8.34 pH 7.91 7.55 8.00 8.11 8.78 8.73 | DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26
DO
10.31
9.56
8.40
8.58
8.51
8.14 | | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May 22-Jun 20-Jul 17-Aug | Epilimnion DEPTH 3 3 3 3 3 3 3 4 4verage Epilimnion DEPTH 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | ALK 158 167 166 140 112 121 157 146 ALK 175 178 168 136 118 | TKN 1.47 1.21 1.03 1.08 1.09 1.04 1.10 1.15 TKN 1.08 1.11 1.09 1.04 0.98 | NH ₃ -N 0.148 0.155 <0.1 <0.1 <0.1 <0.1 0.287 0.197 ^k NH ₃ -N <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 | NO ₂ +NO ₃ -N 2.100 1.970 1.280 0.646 0.255 0.222 0.390 0.980 NO ₃ -N* 1.710 1.290 0.697 0.123 <0.05 | TP 0.021 0.020 0.021 0.012 0.018 0.023 0.040 0.022 TP 0.015 0.021 0.019 0.015 0.024 | SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.015 0.015 SRP <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 | Cl' 334 318 302 310 325 306 291 312 Cl' 303 308 319 331 328 | TSS 4.1 1.1 1.3 4.6 4.9 5.6 2.6 3.5 TSS 3.9 2.7 3.9 5.5 4.3 | TS 941 911 971 921 936 838 839 908 TS 875 897 918 904 867 | TVS 140 138 229 191 227 144 136 172 TVS 150 158 185 168 168 | SECCHI 10.83 12.63 11.84 7.05 6.10 6.63 10.99 9.44 SECCHI 8.56 10.47 5.28 5.18 5.28 | COND 1.5840 1.5400 1.5140 1.4820 1.4810 1.4150 1.4210 1.4910 COND 1.4680 1.5090 1.5140 1.5080 1.4730 | pH 7.84 8.04 8.47 8.74 8.73 8.60 7.98 8.34 pH 7.91 7.55 8.00 8.11 8.78
 DO
11.44
9.12
7.71
9.26
9.41
8.93
8.96
9.26
DO
10.31
9.56
8.40
8.58
8.51 | 6 **Table 1. Continued.** | 2008 | Hypolimnion | | | | | | | | | | | | | | | |--|--|---|--|--|--|--|---|---|---|---|--|---|--|---|---| | DATE | DEPTH | ALK | TKN | NH ₃ -N | NO ₂ +NO ₃ -N | TP | SRP | Cl ⁻ | TSS | TS | TVS | SECCHI | COND | pН | DO | | 16-Apr | 62 | 218 | 2.18 | 1.070 | 0.870 | 0.136 | 0.076 | 469 | 2 | 1150 | 134 | NA | 2.0380 | 7.69 | 3.24 | | 14-May | 54 | 223 | 2.40 | 1.430 | 0.646 | 0.109 | 0.05 | 462 | 4.1 | 1140 | 140 | NA | 2.0130 | 7.54 | 1.01 | | 11-Jun | 61 | 233 | 2.51 | 1.730 | 0.490 | 0.210 | 0.143 | 459 | 3.3 | 1160 | 167 | NA | 1.9970 | 7.11 | 0.22 | | 09-Jul | 61 | 244 | 3.04 | 2.240 | < 0.05 | 0.440 | 0.348 | 451 | 4.5 | 1150 | 175 | NA | 1.9750 | 7.02 | 0.20 | | 13-Aug | 61 | 243 | 2.66 | 2.410 | < 0.05 | 0.549 | 0.44 | 444 | 4.4 | 1170 | 193 | NA | 1.9530 | 7.00 | 0.20 | | 10-Sep | 61 | 257 | 4.08 | 3.140 | < 0.05 | 0.690 | 0.647 | 443 | 5.1 | 1140 | 169 | NA | 1.9730 | 6.90 | 0.20 | | 05-Nov | 61 | 265 | 4.31 | 3.920 | < 0.05 | 1.020 | 0.853 | 427 | 5.1 | 1120 | 170 | NA | 1.9070 | 6.78 | 0.23 | | | Average | 240 | 3.03 | 2.277 | 0.669^{k} | 0.451 | 0.365 | 451 | 4.1 | 1147 | 164 | NA | 1.9794 | 7.15 | 0.76 | | 2007 | Hypolimnion | | | | | | | | | | | | | | | | DATE | DEPTH | ALK | TKN | NH ₃ -N | NO ₂ +NO ₃ -N | TP | SRP | Cl ⁻ | TSS | TS | TVS | SECCHI | COND | pН | DO | | 17-Apr | 60 | 179 | 1.13 | 0.287 | 1.840 | 0.032 | 0.013 | 344 | 1.4 | 980 | 153 | NA | 1.6270 | 7.7 | 10.22 | | 16-May | 60 | 196 | 1.78 | 0.960 | 1.190 | 0.144 | 0.125 | 346 | 1.2 | 943 | 143 | NA | 1.6420 | 7.18 | 2.65 | | 20-Jun | 60 | 211 | 2.39 | 1.690 | 0.487 | 0.346 | 0.307 | 346 | 3.5 | 1010 | 195 | NA | 1.6540 | 6.97 | 0.18 | | 18-Jul | 60 | 221 | 2.58 | 2.060 | 0.059 | 0.476 | 0.415 | 348 | 5.1 | 983 | 164 | NA | 1.6530 | 6.98 | 0.13 | | 15-Aug | 61 | 236 | 3.24 | 2.690 | < 0.05 | 0.573 | 0.547 | 346 | 3 | 1020 | 206 | NA | 1.6550 | 6.71 | 0.12 | | 19-Sep | 60 | 238 | 3.29 | 2.760 | 0.051 | 0.588 | 0.503 | 343 | 3.9 | 982 | 172 | NA | 1.6580 | 6.72 | 0.12 | | 24-Oct | 60 | 239 | 3.88 | 2.930 | 0.052 | 0.633 | 0.595 | 317 | 10 | 880 | 121 | NA | 1.5240 | 6.79 | 0.14 | | | Average | 217 | 2.61 | 1.911 | 0.613 ^k | 0.399 | 0.358 | 341 | 4.0 | 971 | 165 | NA | 1.6304 | 7.01 | 1.94 | | | | 211 | 2.01 | 1.711 | 0.013 | 0.577 | 0.550 | 5-11 | 1.0 | | 105 | | 1.0501 | 7.01 | 1.71 | | 2006 | Hypolimnion | 217 | 2.01 | 1.711 | 0.013 | | 0.550 | 541 | 1.0 | | | | 1.0301 | 7.01 | 1.51 | | 2006
DATE | Hypolimnion DEPTH | ALK | TKN | NH ₃ -N | NO ₂ +NO ₃ -N | TP | SRP | Cl ⁻ | TSS | TS | TVS | SECCHI | COND | pН | DO | | | Hypolimnion DEPTH 55 | | | | | | | | | | | | | | | | DATE | Hypolimnion DEPTH 55 57 | ALK | TKN 1.29 2.08 | NH ₃ -N | NO ₂ +NO ₃ -N | TP | SRP | Cl ⁻
340
337 | TSS
2.8
2.6 | TS | TVS | SECCHI | COND | pН | DO | | DATE
12-Apr | Hypolimnion DEPTH 55 57 | ALK
159
171
174 | TKN
1.29
2.08
1.93 | NH ₃ -N
0.254
0.920
0.972 | NO ₂ +NO ₃ -N
1.970
1.340
1.180 | TP 0.032 | SRP
0.009
0.084
0.106 | Cl ⁻
340
337
328 | TSS
2.8
2.6
2.3 | TS
956
924
989 | TVS
158
137
207 | SECCHI
NA
NA
NA | COND
1.5960 | pH
7.64
6.97
6.89 | DO
10.47
0.36
0.19 | | DATE
12-Apr
17-May | Hypolimnion DEPTH 55 57 57 57 | ALK
159
171
174
181 | TKN 1.29 2.08 1.93 2.52 | NH ₃ -N
0.254
0.920
0.972
1.450 | NO ₂ +NO ₃ -N
1.970
1.340
1.180
0.548 | TP
0.032
0.134
0.138
0.163 | SRP
0.009
0.084
0.106
0.127 | Cl ⁻
340
337 | TSS
2.8
2.6
2.3
2.3 | TS
956
924 | TVS
158
137
207
206 | SECCHI
NA
NA
NA
NA | COND
1.5960
1.5910 | pH
7.64
6.97
6.89
6.73 | DO
10.47
0.36 | | DATE 12-Apr 17-May 21-Jun | Hypolimmion DEPTH 55 57 57 57 57 57 57 | ALK
159
171
174
181
183 | TKN 1.29 2.08 1.93 2.52 2.27 | NH ₃ -N
0.254
0.920
0.972
1.450
1.470 | NO ₂ +NO ₃ -N
1.970
1.340
1.180
0.548
0.315 | TP
0.032
0.134
0.138 | SRP
0.009
0.084
0.106 | Cl ⁻ 340 337 328 339 342 | 2.8
2.6
2.3
2.3
3.8 | TS
956
924
989 | TVS
158
137
207 | SECCHI
NA
NA
NA | COND
1.5960
1.5910
1.6010 | pH
7.64
6.97
6.89 | DO
10.47
0.36
0.19 | | DATE 12-Apr 17-May 21-Jun 19-Jul | Hypolimmion DEPTH 55 57 57 57 57 57 59 | ALK
159
171
174
181
183
212 | TKN 1.29 2.08 1.93 2.52 | NH ₃ -N
0.254
0.920
0.972
1.450
1.470
2.680 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 | TP
0.032
0.134
0.138
0.163 | SRP
0.009
0.084
0.106
0.127 | Cl 340
337
328
339 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 | TS 956 924 989 995 976 973 | TVS
158
137
207
206
175
170 | SECCHI
NA
NA
NA
NA
NA
NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410 | pH
7.64
6.97
6.89
6.73
6.71
6.78 | DO
10.47
0.36
0.19
0.17
0.15 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug | Hypolimmion DEPTH 55 57 57 57 57 57 57 | ALK
159
171
174
181
183
212
158 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 | NH ₃ -N
0.254
0.920
0.972
1.450
1.470
2.680
0.302 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 | TP
0.032
0.134
0.138
0.163
0.138 | SRP
0.009
0.084
0.106
0.127
0.103 | Cl ⁻ 340 337 328 339 342 345 293 | 2.8
2.6
2.3
2.3
3.8
4.0
3.1 | TS 956 924 989 995 976 | TVS
158
137
207
206
175 | SECCHI NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270 | pH
7.64
6.97
6.89
6.73
6.71 | DO
10.47
0.36
0.19
0.17
0.15
0.16
8.55 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov | Hypolimmion DEPTH 55 57 57 57 57 57 59 | ALK
159
171
174
181
183
212 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 | NH ₃ -N
0.254
0.920
0.972
1.450
1.470
2.680 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 | TP 0.032 0.134 0.138 0.163 0.138 0.580 | SRP
0.009
0.084
0.106
0.127
0.103
0.536 | Cl ⁻
340
337
328
339
342
345 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 | TS 956 924 989 995 976 973 | TVS
158
137
207
206
175
170 | SECCHI
NA
NA
NA
NA
NA
NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410 | pH
7.64
6.97
6.89
6.73
6.71
6.78 | DO
10.47
0.36
0.19
0.17
0.15 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov | Hypolimnion DEPTH 55 57 57 57 57 59 56 Average Hypolimnion | ALK
159
171
174
181
183
212
158
177 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 | NH ₃ -N 0.254 0.920 0.972 1.450 1.470 2.680 0.302 1.150 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k | TP
0.032
0.134
0.138
0.163
0.138
0.580
0.040
0.175 | SRP
0.009
0.084
0.106
0.127
0.103
0.536
0.014
0.140 | Cl ⁻ 340 337 328 339 342 345 293 332 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 3.1 3.0 | TS
956
924
989
995
976
973
852
952 | TVS 158 137 207 206 175 170 155 | SECCHI NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410
1.4240
1.5876 | pH
7.64
6.97
6.89
6.73
6.71
6.78
7.94
7.09 | DO
10.47
0.36
0.19
0.17
0.15
0.16
8.55
2.86 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov | Hypolimnion DEPTH 55 57 57 57 57 59 56 Average Hypolimnion DEPTH | ALK
159
171
174
181
183
212
158
177 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 | NH ₃ -N
0.254
0.920
0.972
1.450
1.470
2.680
0.302 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k | TP
0.032
0.134
0.138
0.163
0.138
0.580
0.040 | SRP
0.009
0.084
0.106
0.127
0.103
0.536
0.014 | Cl ⁻ 340 337 328 339 342 345 293 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 3.1 3.0 | TS 956 924 989 995 976 973 852 952 | TVS 158 137 207 206 175 170 155 | SECCHI NA SECCHI | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410
1.4240 | pH
7.64
6.97
6.89
6.73
6.71
6.78
7.94
7.09 | DO
10.47
0.36
0.19
0.17
0.15
0.16
8.55 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr |
Hypolimnion DEPTH 55 57 57 57 57 59 56 Average Hypolimnion DEPTH 61 | ALK
159
171
174
181
183
212
158
177
ALK
175 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 | NH ₃ -N 0.254 0.920 0.972 1.450 1.470 2.680 0.302 1.150 NH ₃ -N 0.365 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k NO ₃ -N* 1.630 | TP
0.032
0.134
0.138
0.163
0.138
0.580
0.040
0.175 | SRP
0.009
0.084
0.106
0.127
0.103
0.536
0.014
0.140 | Cl ⁻ 340 337 328 339 342 345 293 332 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 3.1 3.0 | TS
956
924
989
995
976
973
852
952 | TVS 158 137 207 206 175 170 155 | SECCHI NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410
1.4240
1.5876 | pH
7.64
6.97
6.89
6.73
6.71
6.78
7.94
7.09 | DO
10.47
0.36
0.19
0.17
0.15
0.16
8.55
2.86 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE | Hypolimnion DEPTH 55 57 57 57 57 59 56 Average Hypolimnion DEPTH 61 62 | ALK
159
171
174
181
183
212
158
177 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 TKN 1.25 1.76 | NH ₃ -N 0.254 0.920 0.972 1.450 1.470 2.680 0.302 1.150 NH ₃ -N | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k | TP 0.032 0.134 0.138 0.163 0.138 0.580 0.040 0.175 TP 0.016 0.124 | SRP
0.009
0.084
0.106
0.127
0.103
0.536
0.014
0.140 | Cl' 340 337 328 339 342 345 293 332 Cl' 302 303 | 2.8
2.6
2.3
2.3
3.8
4.0
3.1
3.0
TSS
2.1 | TS 956 924 989 995 976 973 852 952 | TVS 158 137 207 206 175 170 155 173 TVS | SECCHI NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410
1.4240
1.5876 | pH
7.64
6.97
6.89
6.73
6.71
6.78
7.94
7.09 | DO
10.47
0.36
0.19
0.17
0.15
0.16
8.55
2.86 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr | Hypolimnion DEPTH 55 57 57 57 57 59 56 Average Hypolimnion DEPTH 61 62 59 | ALK 159 171 174 181 183 212 158 177 ALK 175 189 209 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 TKN 1.25 1.76 2.89 | NH ₃ -N 0.254 0.920 0.972 1.450 1.470 2.680 0.302 1.150 NH ₃ -N 0.365 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k NO ₃ -N* 1.630 0.991 <0.05 | TP 0.032 0.134 0.138 0.163 0.138 0.580 0.040 0.175 TP 0.016 | SRP
0.009
0.084
0.106
0.127
0.103
0.536
0.014
0.140
SRP
0.013 | Cl ⁻ 340 337 328 339 342 345 293 332 Cl ⁻ 302 303 303 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 3.1 3.0 TSS 2.1 1.7 2.9 | TS 956 924 989 995 976 973 852 952 TS 874 870 916 | TVS 158 137 207 206 175 170 155 173 TVS 148 135 192 | SECCHI NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410
1.4240
1.5876
COND
1.4590 | pH
7.64
6.97
6.89
6.73
6.71
6.78
7.94
7.09 | DO
10.47
0.36
0.19
0.17
0.15
0.16
8.55
2.86 | | 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May | Hypolimnion DEPTH 55 57 57 57 57 59 56 Average Hypolimnion DEPTH 61 62 59 60 | ALK 159 171 174 181 183 212 158 177 ALK 175 189 209 215 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 TKN 1.25 1.76 2.89 3.10 | NH ₃ -N 0.254 0.920 0.972 1.450 1.470 2.680 0.302 1.150 NH ₃ -N 0.365 0.967 2.020 2.000 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k NO ₃ -N* 1.630 0.991 <0.05 0.082 | TP 0.032 0.134 0.138 0.163 0.138 0.580 0.040 0.175 TP 0.016 0.124 0.525 0.471 | SRP 0.009 0.084 0.106 0.127 0.103 0.536 0.014 0.140 SRP 0.013 0.091 0.461 0.413 | Cl' 340 337 328 339 342 345 293 332 Cl' 302 303 303 303 303 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 3.1 3.0 TSS 2.1 1.7 2.9 7.9 | TS 956 924 989 995 976 973 852 952 TS 874 870 916 897 | TVS 158 137 207 206 175 170 155 173 TVS 148 135 192 164 | SECCHI NA | COND 1.5960 1.5910 1.6010 1.6330 1.6270 1.6410 1.4240 1.5876 COND 1.4590 1.4800 1.4670 1.4740 | pH 7.64 6.97 6.89 6.73 6.71 6.78 7.94 7.09 pH 7.36 6.79 6.61 6.58 | DO 10.47 0.36 0.19 0.17 0.15 0.16 8.55 2.86 DO 7.18 0.66 0.00 0.04 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May 22-Jun | Hypolimmion DEPTH 55 57 57 57 57 59 56 Average Hypolimmion DEPTH 61 62 59 60 59 | ALK 159 171 174 181 183 212 158 177 ALK 175 189 209 215 234 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 TKN 1.25 1.76 2.89 | NH ₃ -N 0.254 0.920 0.972 1.450 1.470 2.680 0.302 1.150 NH ₃ -N 0.365 0.967 2.020 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k NO ₃ -N* 1.630 0.991 <0.05 | TP 0.032 0.134 0.138 0.163 0.138 0.580 0.040 0.175 TP 0.016 0.124 0.525 | SRP 0.009 0.084 0.106 0.127 0.103 0.536 0.014 0.140 SRP 0.013 0.091 0.461 | Cl ⁻ 340 337 328 339 342 345 293 332 Cl ⁻ 302 303 303 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 3.1 3.0 TSS 2.1 1.7 2.9 7.9 5.1 | TS 956 924 989 995 976 973 852 952 TS 874 870 916 | TVS 158 137 207 206 175 170 155 173 TVS 148 135 192 | SECCHI NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410
1.4240
1.5876
COND
1.4590
1.4800
1.4670 | pH 7.64 6.97 6.89 6.73 6.71 6.78 7.94 7.09 pH 7.36 6.79 6.61 | DO 10.47 0.36 0.19 0.17 0.15 0.16 8.55 2.86 DO 7.18 0.66 0.00 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May 22-Jun 20-Jul | Hypolimnion DEPTH 55 57 57 57 57 57 56 Average Hypolimnion DEPTH 61 62 59 60 59 60 | ALK 159 171 174 181 183 212 158 177 ALK 175 189 209 215 234 256 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 TKN 1.25 1.76 2.89 3.10 4.00 5.00 | NH ₃ -N 0.254 0.920 0.972 1.450 1.470 2.680 0.302 1.150 NH ₃ -N 0.365 0.967 2.020 2.000 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k NO ₃ -N* 1.630 0.991 <0.05 0.082 | TP 0.032 0.134 0.138 0.163 0.138 0.580 0.040 0.175 TP 0.016 0.124 0.525 0.471 | SRP 0.009 0.084 0.106 0.127 0.103 0.536 0.014 0.140 SRP 0.013 0.091 0.461 0.413 | Cl' 340 337 328 339 342 345 293 332 Cl' 302 303 303 303 303 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 3.1 3.0 TSS 2.1 1.7 2.9 7.9 | TS 956 924 989 995 976 973 852 952 TS 874 870 916 897 | TVS 158 137 207 206 175 170 155 173 TVS 148 135 192 164 | SECCHI NA | COND 1.5960 1.5910 1.6010 1.6330 1.6270 1.6410 1.4240 1.5876 COND 1.4590 1.4800 1.4670 1.4740 | pH 7.64 6.97 6.89 6.73 6.71 6.78 7.94 7.09 pH 7.36 6.79 6.61 6.58 | DO 10.47 0.36 0.19 0.17 0.15 0.16 8.55 2.86 DO 7.18 0.66 0.00 0.04 | | DATE 12-Apr 17-May 21-Jun 19-Jul 16-Aug 20-Sep 01-Nov 2005 DATE 12-Apr 18-May 22-Jun 20-Jul 17-Aug | Hypolimmion DEPTH 55 57 57 57 57 59 56 Average Hypolimmion DEPTH 61 62 59 60 59 | ALK 159 171 174 181 183 212 158 177 ALK 175 189 209 215 234 | TKN 1.29 2.08 1.93 2.52 2.27 3.42 1.13 2.09 TKN 1.25 1.76 2.89 3.10 4.00 | NH ₃ -N 0.254 0.920 0.972 1.450 1.470 2.680 0.302 1.150 NH ₃ -N 0.365 0.967 2.020 2.000 3.140 | NO ₂ +NO ₃ -N 1.970 1.340 1.180 0.548 0.315 <0.05 0.414 0.825 ^k NO ₃ -N* 1.630 0.991 <0.05 0.082 <0.05 | TP 0.032 0.134 0.138 0.163 0.138 0.580 0.040 0.175 TP 0.016 0.124 0.525 0.471 0.762 | SRP 0.009 0.084 0.106 0.127 0.103 0.536 0.014 0.140 SRP 0.013 0.091 0.461 0.413 0.689 | Cl ⁻ 340 337 328 339 342 345 293 332 Cl ⁻ 302 303 303 303 303 | TSS 2.8 2.6 2.3 2.3 3.8 4.0 3.1 3.0 TSS 2.1 1.7 2.9 7.9 5.1 | TS 956 924 989 995 976 973 852 952 TS 874 870 916 897 913 | TVS 158 137 207 206 175 170 155 173 TVS 148 135 192 164 194 | SECCHI NA | COND
1.5960
1.5910
1.6010
1.6330
1.6270
1.6410
1.4240
1.5876
COND
1.4590
1.4800
1.4670
1.4740
1.4870 | pH 7.64 6.97 6.89 6.73 6.71 6.78 7.94 7.09 pH 7.36 6.79 6.61 6.58 6.62 | DO
10.47
0.36
0.19
0.17
0.15
0.16
8.55
2.86
DO
7.18
0.66
0.00
0.04
0.01 | ## Table 1. Continued. #### Glossary ALK = Alkalinity, mg/L CaCO₃ TDS = Total dissolved solids, mg/L TKN = Total Kjeldahl nitrogen, mg/L NH₃-N = Ammonia nitrogen, mg/L NO₂+NO₃-N = Nitrate + Nitrite nitrogen, mg/L TVS = Total solids, mg/L TVS = Total solids, mg/L TVS = Total volatile solids, mg/L SECCHI = Secchi disk depth, ft. COND = Conductivity, milliSiemens/cm DO = Dissolved oxygen, mg/L CI = Chloride, mg/L k = Denotes that the actual value is known to be less than the value presented. NA= Not applicable * = Prior to 2006 only Nitrate - nitrogen was analyzed Figure 2. Yearly Secchi depth averages from VLMP and LCHD records for Third Lake. 9 Figure 3. Total suspended solid (TSS) concentrations vs. Secchi depth for Third Lake, 2000 - 2008. Table 2. Lake County average TSI phosphorous (TSIp) ranking 2000-2008. | RANK | LAKE NAME | TP AVE | TSIp | |------|-------------------------|--------|-------| | 1 | Lake Carina | 0.0100 | 37.35 | | 2 | Sterling Lake | 0.0100 | 37.35 | | 3 | Independence Grove | 0.0135 | 39.24 | | 4 | Lake Zurich | 0.0130 | 41.14 | | 5 | Sand Pond (IDNR) | 0.0165 | 41.36 | | 6 | West Loon Lake | 0.0140 | 42.21 | | 7 | Windward Lake | 0.0158 | 43.95 | | 8 | Bangs Lake | 0.0170 | 45.00 | | 9 | Pulaski Pond | 0.0180 | 45.83 | | 10 | Timber Lake | 0.0180 | 45.83 | | 11 | Fourth Lake | 0.0182 | 45.99 | | 12 | Lake Kathryn | 0.0200 | 47.35 | | 13 | Lake of the Hollow | 0.0200 | 47.35 | | 14 | Banana Pond | 0.0202 | 47.49 | | 15 | Lake Minear | 0.0204 | 47.63 | | 16 | Cedar Lake | 0.0220 | 48.72 | | 17 | Cross Lake | 0.0220 | 48.72 | | 18 | Sun Lake | 0.0220 | 48.72 | | 19 | Dog Pond | 0.0222 | 48.85 | | 20 | Stone Quarry Lake | 0.0230 | 49.36 | | 21 | Deep Lake | 0.0234 | 49.61 | | 22 | Druce Lake | 0.0244 | 50.22 | | 23 | Little Silver | 0.0250 | 50.57 | | 24 | Round Lake | 0.0254 | 50.80 | | 25 | Lake Leo | 0.0256 | 50.91 | | 26 | Cranberry Lake | 0.0270 | 51.68 | | 27 | Dugdale Lake | 0.0274 | 51.89 | | 28 | Peterson Pond | 0.0274 | 51.89 | | 29 | Lake Miltmore | 0.0276 | 51.99 | | 30 | Third Lake | 0.0280 | 52.20 | | 31 | Lake Fairfield | 0.0296 | 53.00 | | 32 | Gray's Lake | 0.0302 | 53.29 | | 33 | Highland Lake | 0.0302 | 53.29 | | 34 | Hook Lake | 0.0302 | 53.29 | | 35 | Lake Catherine (Site 1) | 0.0308 | 53.57 | | 36 | Lambs Farm Lake | 0.0312 | 53.76 | | 37 | Old School Lake | 0.0312 | 53.76 | | 38 |
Sand Lake | 0.0316 | 53.94 | | 39 | Sullivan Lake | 0.0320 | 54.13 | | 40 | Lake Linden | 0.0326 | 54.39 | | 41 | Gages Lake | 0.0338 | 54.92 | | 42 | Honey Lake | 0.0340 | 55.00 | | 43 | Hendrick Lake | 0.0344 | 55.17 | | 44 | Diamond Lake | 0.0372 | 56.30 | | 45 | Channel Lake (Site 1) | 0.0380 | 56.60 | | 46 | Ames Pit | 0.0390 | 56.98 | | | | | | Table 2. Continued. | RANK | LAKE NAME | TP AVE | TSIp | |------|-----------------------|--------|-------| | 47 | White Lake | 0.0408 | 57.63 | | 48 | Potomac Lake | 0.0424 | 58.18 | | 49 | Duck Lake | 0.0426 | 58.25 | | 50 | Old Oak Lake | 0.0428 | 58.32 | | 51 | Deer Lake | 0.0434 | 58.52 | | 52 | Schreiber Lake | 0.0434 | 58.52 | | 53 | Nielsen Pond | 0.0448 | 58.98 | | 54 | Turner Lake | 0.0458 | 59.30 | | 55 | Seven Acre Lake | 0.0460 | 59.36 | | 56 | Willow Lake | 0.0464 | 59.48 | | 57 | Lucky Lake | 0.0476 | 59.85 | | 58 | Davis Lake | 0.0476 | 59.85 | | 59 | East Meadow Lake | 0.0478 | 59.91 | | 60 | East Loon Lake | 0.0490 | 60.27 | | 61 | College Trail Lake | 0.0496 | 60.45 | | 62 | Lake Lakeland Estates | 0.0524 | 61.24 | | 63 | Butler Lake | 0.0528 | 61.35 | | 64 | West Meadow Lake | 0.0530 | 61.40 | | 65 | Heron Pond | 0.0545 | 61.80 | | 66 | Little Bear Lake | 0.0550 | 61.94 | | 67 | Lucy Lake | 0.0552 | 61.99 | | 68 | Lake Christa | 0.0576 | 62.60 | | 69 | Lake Charles | 0.0580 | 62.70 | | 70 | Crooked Lake | 0.0608 | 63.38 | | 71 | Waterford Lake | 0.0610 | 63.43 | | 72 | Lake Naomi | 0.0616 | 63.57 | | 73 | Lake Tranquility S1 | 0.0618 | 63.62 | | 74 | Wooster Lake | 0.0620 | 63.66 | | 75 | Countryside Lake | 0.0620 | 63.66 | | 76 | Werhane Lake | 0.0630 | 63.89 | | 77 | Liberty Lake | 0.0632 | 63.94 | | 78 | Countryside Glen Lake | 0.0642 | 64.17 | | 79 | Lake Fairview | 0.0648 | 64.30 | | 80 | Leisure Lake | 0.0648 | 64.30 | | 81 | Tower Lake | 0.0662 | 64.61 | | 82 | St. Mary's Lake | 0.0666 | 64.70 | | 83 | Mary Lee Lake | 0.0682 | 65.04 | | 84 | Hastings Lake | 0.0684 | 65.08 | | 85 | Spring Lake | 0.0726 | 65.94 | | 86 | ADID 203 | 0.0730 | 66.02 | | 87 | Bluff Lake | 0.0734 | 66.10 | | 88 | Harvey Lake | 0.0766 | 66.71 | | 89 | Broberg Marsh | 0.0782 | 67.01 | | 90 | Sylvan Lake | 0.0794 | 67.23 | | 91 | Big Bear Lake | 0.0806 | 67.45 | | 92 | Petite Lake | 0.0834 | 67.94 | Table 2. Continued. | RANK | LAKE NAME | TP AVE | TSIp | |------------|--------------------------------------|--------|-------| | 93 | Timber Lake (South) | 0.0848 | 68.18 | | 94 | Lake Marie (Site 1) | 0.0850 | 68.21 | | 95 | North Churchill Lake | 0.0872 | 68.58 | | 96 | Grand Avenue Marsh | 0.0874 | 68.61 | | 97 | Grandwood Park, Site II, Outflow | 0.0876 | 68.65 | | 98 | North Tower Lake | 0.0878 | 68.68 | | 99 | South Churchill Lake | 0.0896 | 68.97 | | 100 | Rivershire Pond 2 | 0.0900 | 69.04 | | 101 | McGreal Lake | 0.0914 | 69.26 | | 102 | International Mine and Chemical Lake | 0.0948 | 69.79 | | 103 | Eagle Lake (Site I) | 0.0950 | 69.82 | | 104 | Valley Lake | 0.0950 | 69.82 | | 105 | Dunns Lake | 0.0952 | 69.85 | | 106 | Fish Lake | 0.0956 | 69.91 | | 107 | Lochanora Lake | 0.0960 | 69.97 | | 108 | Owens Lake | 0.0978 | 70.23 | | 109 | Woodland Lake | 0.0986 | 70.35 | | 110 | Island Lake | 0.0990 | 70.41 | | 111 | McDonald Lake 1 | 0.0996 | 70.50 | | 112 | Longview Meadow Lake | 0.1024 | 70.90 | | 113 | Lake Barrington | 0.1053 | 71.31 | | 114 | Redwing Slough, Site II, Outflow | 0.1072 | 71.56 | | 115 | Lake Forest Pond | 0.1074 | 71.59 | | 116 | Bittersweet Golf Course #13 | 0.1096 | 71.88 | | 117 | Fox Lake (Site 1) | 0.1098 | 71.90 | | 118 | Osprey Lake | 0.1108 | 72.04 | | 119 | Bresen Lake | 0.1126 | 72.27 | | 120 | Round Lake Marsh North | 0.1126 | 72.27 | | 121 | Deer Lake Meadow Lake | 0.1158 | 72.67 | | 122 | Long Lake | 0.1170 | 72.82 | | 123 | Taylor Lake | 0.1184 | 72.99 | | 124 | Columbus Park Lake | 0.1226 | 73.49 | | 125 | Nippersink Lake (Site 1) | 0.1240 | 73.66 | | 126 | Echo Lake | 0.1250 | 73.77 | | 127 | Grass Lake (Site 1) | 0.1288 | 74.21 | | 128 | Lake Holloway | 0.1322 | 74.58 | | 129 | Lakewood Marsh | 0.1330 | 74.67 | | 130
131 | Summerhill Estates Lake | 0.1384 | 75.24 | | | Redhead Lake | 0.1412 | 75.53 | | 132
133 | Forest Lake | 0.1422 | 75.63 | | | Antioch Lake | 0.1448 | 75.89 | | 134 | Slocum Lake | 0.1496 | 76.36 | | 135
136 | Drummond Lake | 0.1510 | 76.50 | | | Pond-a-Rudy | 0.1514 | 76.54 | | 137 | Lake Matthews | 0.1516 | 76.56 | | 138 | Buffalo Creek Reservoir | 0.1550 | 76.88 | Table 2. Continued. | RANK | LAKE NAME | TP AVE | TSIp | |------|-------------------------------|--------|--------| | 139 | Pistakee Lake (Site 1) | 0.1592 | 77.26 | | 140 | Grassy Lake | 0.1610 | 77.42 | | 141 | Salem Lake | 0.1650 | 77.78 | | 142 | Half Day Pit | 0.1690 | 78.12 | | 143 | Lake Eleanor Site II, Outflow | 0.1812 | 79.13 | | 144 | Lake Farmington | 0.1848 | 79.41 | | 145 | Lake Louise | 0.1850 | 79.43 | | 146 | ADID 127 | 0.1886 | 79.71 | | 147 | Dog Bone Lake | 0.1990 | 80.48 | | 148 | Redwing Marsh | 0.2072 | 81.06 | | 149 | Stockholm Lake | 0.2082 | 81.13 | | 150 | Bishop Lake | 0.2156 | 81.63 | | 151 | Hidden Lake | 0.2236 | 82.16 | | 152 | Fischer Lake | 0.2278 | 82.43 | | 153 | Lake Napa Suwe (Outlet) | 0.2304 | 82.59 | | 154 | Patski Pond (outlet) | 0.2512 | 83.84 | | 155 | Oak Hills Lake | 0.2792 | 85.36 | | 156 | Loch Lomond | 0.2954 | 86.18 | | 157 | McDonald Lake 2 | 0.3254 | 87.57 | | 158 | Fairfield Marsh | 0.3264 | 87.61 | | 159 | ADID 182 | 0.3280 | 87.69 | | 160 | Slough Lake | 0.4134 | 91.02 | | 161 | Flint Lake Outlet | 0.4996 | 93.75 | | 162 | Rasmussen Lake | 0.5025 | 93.84 | | 163 | Albert Lake, Site II, outflow | 1.1894 | 106.26 | ## SUMMARY OF AQUATIC MACROPHYTES An aquatic plant (macrophyte) survey was conducted in July of 2007. Sampling sites were based on a grid system created by mapping software (ArcMap), with each site located 60 meters apart. On Third Lake, there were 99 sites sampled (Figure 4) and plants were found at a maximum depth of 6.5 feet. Aquatic plants will not photosynthesize at water depths with less than 1% of the available sunlight at the surface. During 2008, the depth of the 1% light level ranged from 8 feet (June) to 15 feet (July and August). There was a total of six aquatic plant species and one macro-algae species found (Table 3). Sago Pondweed was the most dominant species found at 23% of the sampled sites (Table 4a). Eurasian Watermilfoil (EWM) was the second most common species found at 18% of the sampled sites. EWM was found in similar densities in 2007 (16% of the sites in June and 20% of the sites in August). EWM has decreased from 2006 when EWM was the most dominant species both months found at 39% of the sites sampled. To maintain a healthy sunfish/bass fishery, the Illinois Department of Natural Resources (IDNR) recommends plant coverage be 30% to 40% across the lake bottom. The 2008 survey found approximately 40% of the sites sampled had aquatic plants (Table 4b). It was calculated that approximately 22% of the lake bottom was covered by plants. Floristic Quality Index (FQI) is a rapid assessment tool designed to evaluate the closeness of the flora of an area to that of undisturbed conditions. It can be used to: 1) identify natural areas, 2) compare the quality of different sites or different locations within a single site, 3) monitor long-term floristic trends, and 4) monitor habitat restoration efforts. A high FQI number indicates that there were large numbers of sensitive, high quality plant species present in the lake. Non-native species were also included in the FQI calculations for Lake County lakes. The average FQI for 2000-2008 Lake County lakes was 13.6 (Table 5). Third Lake had a FQI of 10.2 in 2008 which was a decrease from 2005 (19.6), 2006 (14.1), and 2007(16.8). Figure 4. Aquatic plant sampling grid that illustrates plant density on Third Lake, July 2008. Table 3. Aquatic plant species found in Third Lake in 2008. Chara spp. Illinois Pondweed Potamogeton illinoensis Sago Pondweed Potamogeton pectinatus Eurasian Water Milfoil Myriophyllum spicatum Slender Naiad Najas flexilis Spiny Naiad Najas marina White Water Lily Nymphaea tuberosa ^ Exotic plant Table 4a. Aquatic plant species found at the 99 sampling sites on Third Lake in July, 2008. The maximum depth that plants were found was 6.5 feet | July | | | | | | | | |-----------------------|-------|--------------------------|----------------------|------------------|------------------|----------------|------------------------| | Plant
Density | Chara | Eurasian
Watermilfoil | Illinois
Pondweed | Sago
Pondweed | Slender
Naiad | Spiny
Naiad | White
Water
Lily | | Absent | 94 | 81 | 97 | 76 | 94 | 94 | 97 | | Present | 4 | 14 | 2 | 19 | 5 | 5 | 1 | | Common | 1 | 2 | 0 | 3 | 0 | 0 | 1 | | Abundant | 0 | 2 | 0 | 1 | 0 | 0 | 0 | | Dominant | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | % Plant
Occurrence | 5.1 | 18.2 | 2.0 | 23.2 | 5.1 | 5.1 | 2.0 | Table 4b. Distribution of rake density across all sampling sites | July | | | |----------------------------|---------------|--------| | Rake Density
(Coverage) | # of
Sites | % | | No plants | 59 | 59.6% | | >0 to 10% | 32 | 32.3% | | >10 to 40% | 5 | 5.1% | | >40 to 60% | 3 | 3.0% | | >60 to 90% | 0 | 0.0% | | >90% | 0 | 0.0% | | Total Sites with Plants | 40 | 40.4% | | Total # of
Sites | 99 | 100.0% | Table 5. Floristic quality index (FQI) of lakes in Lake County, calculated with exotic species (w/Adventives) and with native species only (native) | RANK | LAKE NAME | FQI (w/A) | FQI (native) | |------|-------------------------|-----------|--------------| | 1 | Cedar Lake | 36.3 | 38.4 | | 2 | East Loon Lake | 30.6 | 32.7 | | 3 | Cranberry Lake | 30.1 | 31.6 | | 4 | Deep Lake | 29.7 | 31.2 | | 5 | Little Silver | 29.6 | 31.6 | | 6 | Round Lake Marsh North | 29.1 | 29.9 | | 7 | Deer Lake | 28.2 | 29.7 | | 8 | Sullivan Lake | 28.2 | 29.7 | | 9 | Schreiber Lake | 26.8 | 27.6 | | 10 | Bangs Lake | 25.7 | 27.4 | | 11 | West Loon Lake | 25.7 |
27.3 | | 12 | Cross Lake | 25.2 | 27.8 | | 13 | Independence Grove | 24.6 | 27.5 | | 14 | Sterling Lake | 24.5 | 26.9 | | 15 | Lake Zurich | 24.3 | 27.1 | | 16 | Sun Lake | 24.3 | 26.1 | | 17 | Lake of the Hollow | 23.8 | 26.2 | | 18 | Lakewood Marsh | 23.8 | 24.7 | | 19 | Round Lake | 23.5 | 25.9 | | 20 | Honey Lake | 23.3 | 25.1 | | 21 | Fourth Lake | 23.0 | 24.8 | | 22 | Druce Lake | 22.8 | 25.2 | | 23 | Countryside Glen Lake | 21.9 | 22.8 | | 24 | Butler Lake | 21.4 | 23.1 | | 25 | Duck Lake | 21.1 | 22.9 | | 26 | Timber Lake (North) | 20.8 | 22.8 | | 27 | Broberg Marsh | 20.5 | 21.4 | | 28 | Davis Lake | 20.5 | 21.4 | | 29 | ADID 203 | 20.5 | 20.5 | | 30 | McGreal Lake | 20.2 | 22.1 | | 31 | Lake Kathryn | 19.6 | 20.7 | | 32 | Fish Lake | 19.3 | 21.2 | | 33 | Owens Lake | 19.3 | 20.2 | | 34 | Redhead Lake | 19.3 | 21.2 | | 35 | Turner Lake | 18.6 | 21.2 | | 36 | Wooster Lake | 18.5 | 20.2 | | 37 | Salem Lake | 18.5 | 20.2 | | 38 | Lake Miltmore | 18.4 | 20.3 | | 39 | Hendrick Lake | 17.7 | 17.7 | | 40 | Summerhill Estates Lake | 17.1 | 18.0 | | 41 | Seven Acre Lake | 17.0 | 15.5 | | 42 | Gray's Lake | 16.9 | 19.8 | | 43 | Lake Barrington | 16.7 | 17.7 | | 44 | Bresen Lake | 16.6 | 17.8 | | | | | | Table 5. Continued. | Rank | LAKE NAME | FQI (w/A) | FQI (native) | |----------|--------------------------------------|--------------|--------------| | 45 | Diamond Lake | 16.3 | 17.4 | | 46 | Lake Napa Suwe | 16.3 | 17.4 | | 47 | Windward Lake | 16.3 | 17.6 | | 48 | Dog Bone Lake | 15.7 | 15.7 | | 49 | Redwing Slough | 15.6 | 16.6 | | 50 | Osprey Lake | 15.5 | 17.3 | | 51 | Lake Fairview | 15.2 | 16.3 | | 52 | Heron Pond | 15.1 | 15.1 | | 53 | Lake Tranquility (S1) | 15.0 | 17.0 | | 54 | North Churchill Lake | 15.0 | 15.0 | | 55 | Dog Training Pond | 14.7 | 15.9 | | 56 | Island Lake | 14.7 | 16.6 | | 57 | Highland Lake | 14.5 | 16.7 | | 58 | Grand Avenue Marsh | 14.3 | 16.3 | | 59 | Taylor Lake | 14.3 | 16.3 | | 60 | Dugdale Lake | 14.0 | 15.1 | | 61 | Eagle Lake (S1) | 14.0 | 15.1 | | 62 | Longview Meadow Lake Ames Pit | 13.9 | 13.9 | | 63 | | 13.4
13.4 | 15.5 | | 64
65 | Bishop Lake
Hook Lake | 13.4 | 15.0
15.5 | | 66 | | | | | 67 | Long Lake
Buffalo Creek Reservoir | 13.1
13.1 | 15.1
14.3 | | 68 | Mary Lee Lake | 13.1 | 15.1 | | 69 | McDonald Lake 2 | 13.1 | 14.3 | | 70 | Old School Lake | 13.1 | 15.1 | | 71 | Dunn's Lake | 12.7 | 13.9 | | 72 | Old Oak Lake | 12.7 | 14.7 | | 73 | Timber Lake (South) | 12.7 | 14.7 | | 74 | White Lake | 12.7 | 14.7 | | 75 | Hastings Lake | 12.5 | 14.8 | | 76 | Sand Lake | 12.5 | 14.8 | | 77 | Stone Quarry Lake | 12.5 | 12.5 | | 78 | Lake Carina | 12.1 | 14.3 | | 79 | Lake Leo | 12.1 | 14.3 | | 80 | Lambs Farm Lake | 12.1 | 14.3 | | 81 | Pond-A-Rudy | 12.1 | 12.1 | | 82 | Stockholm Lake | 12.1 | 13.5 | | 83 | Grassy Lake | 12 | 12 | | 84 | Lake Matthews | 12.0 | 12.0 | | 85 | Flint Lake | 11.8 | 13.0 | | 86 | Harvey Lake | 11.8 | 13.0 | | 87 | Rivershire Pond 2 | 11.5 | 13.3 | | 88 | Antioch Lake | 11.3 | 13.4 | | 89 | Lake Charles | 11.3 | 13.4 | | 90 | Lake Linden | 11.3 | 11.3 | Table 5. Continued. | Rank | LAKE NAME | FQI (w/A) | FQI (native) | |------------|--------------------------------------|------------|--------------| | 91 | Lake Naomi | 11.2 | 12.5 | | 92 | Pulaski Pond | 11.2 | 12.5 | | 93 | Lake Minear | 11.0 | 13.9 | | 94 | Redwing Marsh | 11.0 | 11.0 | | 95 | Tower Lake | 11.0 | 11.0 | | 96 | West Meadow Lake | 11.0 | 11.0 | | 97 | Nielsen Pond | 10.7 | 12.0 | | 98 | Lake Holloway | 10.6 | 10.6 | | 99 | Third Lake | 10.2 | 12.5 | | 100 | Crooked Lake | 10.2 | 12.5 | | 101 | College Trail Lake | 10.0 | 10.0 | | 102 | Lake Lakeland Estates | 10.0 | 11.5 | | 103 | Valley Lake | 9.9 | 9.9 | | 104 | Werhane Lake | 9.8 | 12.0 | | 105 | Big Bear Lake | 9.5 | 11.0 | | 106 | Little Bear Lake | 9.5 | 11.0 | | 107 | Loch Lomond | 9.4 | 12.1 | | 108 | Columbus Park Lake | 9.2 | 9.2 | | 109 | Sylvan Lake | 9.2 | 9.2 | | 110
111 | Lake Louise
Fischer Lake | 9
9.0 | 10.4 | | 111 | Grandwood Park Lake | 9.0 | 11.0
11.0 | | 112 | Lake Fairfield | 9.0 | 10.4 | | 113 | McDonald Lake 1 | 8.9 | 10.4 | | 115 | | 8.7 | 10.6 | | 116 | Countryside Lake
East Meadow Lake | 8.7
8.5 | 8.5 | | 117 | Lake Christa | 8.5 | 9.8 | | 118 | Lake Farmington | 8.5 | 9.8 | | 119 | Lucy Lake | 8.5 | 9.8 | | 120 | South Churchill Lake | 8.5 | 8.5 | | 121 | Bittersweet Golf Course #13 | 8.1 | 8.1 | | 122 | Woodland Lake | 8.1 | 9.9 | | 123 | Albert Lake | 7.5 | 8.7 | | 124 | Banana Pond | 7.5 | 9.2 | | 125 | Fairfield Marsh | 7.5 | 8.7 | | 126 | Lake Eleanor | 7.5 | 8.7 | | 127 | Patski Pond | 7.1 | 7.1 | | 128 | Rasmussen Lake | 7.1 | 7.1 | | 129 | Slough Lake | 7.1 | 7.1 | | 130 | Lucky Lake | 7.0 | 7.0 | | 131 | Lake Forest Pond | 6.9 | 8.5 | | 132 | Leisure Lake | 6.4 | 9.0 | | 133 | Peterson Pond | 6.0 | 8.5 | | 134 | Gages Lake | 5.8 | 10.0 | | 135 | Slocum Lake | 5.8 | 7.1 | | 136 | Deer Lake Meadow Lake | 5.2 | 6.4 | Table 5. Continued. | Rank | LAKE NAME | FQI (w/A) | FQI (native) | |------|------------------|-----------|--------------| | 137 | ADID 127 | 5.0 | 5.0 | | 138 | Drummond Lake | 5.0 | 7.1 | | 139 | IMC Lake | 5.0 | 7.1 | | 140 | Liberty Lake | 5.0 | 5.0 | | 141 | Oak Hills Lake | 5.0 | 5.0 | | 142 | Forest Lake | 3.5 | 5.0 | | 143 | Sand Pond (IDNR) | 3.5 | 5.0 | | 144 | Half Day Pit | 2.9 | 5.0 | | 145 | Lochanora Lake | 2.5 | 5.0 | | 146 | Echo Lake | 0.0 | 0.0 | | 147 | Hidden Lake | 0.0 | 0.0 | | 148 | North Tower Lake | 0.0 | 0.0 | | 149 | Potomac Lake | 0.0 | 0.0 | | 150 | St. Mary's Lake | 0.0 | 0.0 | | 151 | Waterford Lake | 0.0 | 0.0 | | 152 | Willow Lake | 0.0 | 0.0 | | | Mean | 13.6 | 14.9 | | | Median | 12.5 | 14.3 | | APPENDIX A. MI | ETHODS FOR FIELI
LABORATORY A | ΓΙΟΝ AND | |----------------|----------------------------------|----------| | | | | | | | | | | | | ### **Water Sampling and Laboratory Analyses** Two water samples were collected once a month from May through September. Sample locations were at the deepest point in the lake (see sample site map), three feet below the surface, and 3 feet above the bottom. Samples were collected with a horizontal Van Dorn water sampler. Approximately three liters of water were collected for each sample for all lab analyses. After collection, all samples were placed in a cooler with ice until delivered to the Lake County Health Department lab, where they were refrigerated. Analytical methods for the parameters are listed in Table A1. Except nitrate nitrogen, all methods are from the Eighteenth Edition of Standard Methods, (eds. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1992). Methodology for nitrate nitrogen was taken from the 14th edition of Standard Methods. Dissolved oxygen, temperature, conductivity and pH were measured at the deep hole with a Hydrolab DataSonde® 4a. Photosynthetic Active Radiation (PAR) was recorded using a LI-COR® 192 Spherical Sensor attached to the Hydrolab DataSonde® 4a. Readings were taken at the surface and then every two feet until reaching the bottom. ## **Plant Sampling** In order to randomly sample each lake, mapping software (ArcMap 9.3) overlaid a grid pattern onto an aerial photo of Lake County and placed points 60 or 30 meters apart, depending on lake size. Plants were sampled using a garden rake fitted with hardware cloth. The hardware cloth surrounded the rake tines and is tapered two feet up the handle. A rope was tied to the end of the handle for retrieval. At designated sampling sites, the rake was tossed into the water, and using the attached rope, was dragged across the bottom, toward the boat. After pulling the rake into the boat, plant coverage was assessed for overall abundance. Then plants were individually identified and placed in categories based on coverage. Plants that were not found on the rake but were seen in the immediate vicinity of the boat at the time of sampling were also recorded. Plants difficult to identify in the field were placed in plastic bags and identified with plant keys after returning to the office. The depth of each sampling location was measured either by a hand-held depth meter, or by pushing the rake straight down and measuring the depth along the rope or rake handle. One-foot increments were marked along the rope and rake handle to aid in depth estimation. #### Wildlife Assessment Species of wildlife were noted during visits to each lake. When possible, wildlife was identified to species by sight or sound. However, due to time constraints, collection of quantitative information was not possible. Thus, all data should be considered anecdotal. Some of the species on the list may have only been seen once, or were spotted during their migration through the area. Table A1. Analytical methods used for water quality parameters. | Parameter | Method | |---------------------------------|--| | Temperature | Hydrolab DataSonde® 4a or | | | YSI 6600 Sonde® | | Dissolved oxygen | Hydrolab DataSonde ®4a or | | | YSI 6600 Sonde® | | Nitrate and Nitrite nitrogen | USEPA 353.2 rev. 2.0 | | | EPA-600/R-93/100 | | | Detection Limit = 0.05 mg/L | | Ammonia nitrogen | SM 18 th ed. Electrode method, | | | #4500 NH ₃ -F | | | Detection Limit = 0.1 mg/L | | Total Kjeldahl nitrogen | SM 18 th ed, 4500-N _{org} C | | | Semi-Micro Kjeldahl, plus 4500 NH ₃ -F | | | Detection Limit = 0.5 mg/L | | pН | Hydrolab DataSonde® 4a, or | | | YSI 6600 Sonde® | | | Electrometric method | | Total solids | SM 18 th ed, Method #2540B | | Total suspended solids | SM 18 th ed, Method #2540D | | | Detection Limit = 0.5 mg/L | | Chloride | SM 18 th ed, Method #4500C1-D | | Total volatile solids | SM 18 th ed, Method #2540E, from total solids | | Alkalinity | SM 18 th ed, Method #2320B, | | | patentiometric titration curve method | | Conductivity | Hydrolab DataSonde® 4a or | | | YSI 6600 Sonde® | | Total phosphorus | SM 18 th ed,
Methods #4500-P B 5 and | | | #4500-P E | | | Detection Limit = 0.01 mg/L | | Soluble reactive phosphorus | SM 18 th ed, Methods #4500-P B 1 and | | | #4500-P E | | | Detection Limit = 0.005 mg/L | | Clarity | Secchi disk | | Color | Illinois EPA Volunteer Lake | | | Monitoring Color Chart | | Photosynthetic Active Radiation | Hydrolab DataSonde® 4a or YSI 6600 | | (PAR) | Sonde®, LI-COR® 192 Spherical | | | Sensor | | APPENDIX B. MULTI-PARAMETER DATA FOR THIRD LAKE IN 2008. | |--| | | | | | | | | | | | | Third Lake 2008 Multiparameter data | Date
MMDDY
Y | Time
HHMMSS | Text
Depth
feet | Dep25 feet | Temp
øC | DO
mg/l | DO%
Sat | SpCond
mS/cm | | PAR
æE/s/mý | Depth of
Light Meter
feet | % Light
Transmission | Extinction
Coefficient | |--------------------|------------------|-----------------------|---------------|--------------|--------------|--------------|-----------------|--------------|----------------|---------------------------------|-------------------------|---------------------------| | | | | | | | | | | | | Average | 0.46 | | 41608 | 113721 | 0.25 | 0.39 | 7.71 | 10.96 | 95.1 | 1.39 | 7.98 | 4376 | Surface | C | | | 41608 | 113843 | 1 | 0.96 | 7.74 | 10.93 | 94.9 | 1.392 | 8.05 | 1139 | Surface | 100% | | | 41608 | 113942 | 2 | 2.05 | 7.69 | 10.92 | 94.8 | 1.391 | 8.07 | 640 | 0.3 | 56% | 1.92 | | 41608 | 114047 | 3 | 2.99 | 7.75 | 10.9 | 94.6 | 1.391 | 8.02 | 1090 | 1.24 | 96% | -0.43 | | 41608 | 114126 | 4 | 3.95 | 7.72 | 10.86 | 94.4 | 1.39 | 8.04 | 355 | 2.2 | 31% | 0.51 | | 41608 | 114232 | 6 | 6 | 7.71 | 10.85 | 94.1 | 1.391 | 8.08 | 108 | 4.25 | 9% | 0.28 | | 41608 | 114320 | 8 | 8.07 | 7.69 | 10.85 | 94.1 | 1.391 | 8.12 | 26 | 6.32 | 2% | 0.23 | | 41608 | 114353 | 10 | 10.03 | | 10.84 | 94 | 1.391 | 8.15 | 3 | 8.28 | 0.3% | 0.26 | | 41608 | 114441 | 12 | 12.17 | 7.63 | 10.8 | 93.7 | 1.391 | 8.18 | 0 | 10.42 | | | | 41608 | 114528 | 14 | 13.97 | | 10.79 | 93.4 | 1.392 | 8.2 | 0 | 12.22 | | | | 41608 | 114607 | 16 | 15.89 | 7.61 | 10.72 | 92.7 | 1.39 | 8.22 | 0 | 14.14 | | | | 41608 | 114706 | 18 | 18.1 | 7.46 | 10.7 | 92.1 | 1.394 | 8.24 | 0 | 16.35 | | | | 41608 | 114752 | 20 | 20.09 | 7.37 | 10.68 | 91.3 | 1.394 | 8.24 | 0 | 18.34 | | | | 41608 | 114829 | 22 | 22 | 6.94 | 10.5 | 89.9 | 1.405 | 8.22 | 0 | 20.25 | | | | 41608 | 114915 | 24 | 23.74 | 6.32 | 10.28 | 86.4 | 1.415 | 8.19 | 0 | 21.99 | | | | 41608 | 115149 | 26 | 26 | 6.23 | 10.2 | 85.3 | 1.457 | 8.19 | 0 | 24.25 | | | | 41608 | 115249 | 28 | 28.1 | 6.1 | 10.13 | 84.6 | 1.488 | 8.12 | 0 | 26.35 | | | | 41608 | 115049 | 30 | 30.67 | 5.34 | 9.95 | 81.3 | 1.545 | 8.15 | 0 | 28.92 | | | | 41608 | 115322 | 32 | 32.07 | 5.05 | 10.27 | 82.4 | 1.571 | 8.11 | 0 | 30.32 | | | | 41608 | 115412 | 34 | 34.04 | 4.27 | 9.85 | 78
76.2 | 1.644 | 8.04 | 0 | 32.29 | | | | 41608 | 115448 | 36 | 36 | 2.97 | 9.89 | 76.2 | 1.8 | 7.97 | 0 | 34.25 | | | | 41608 | 115535 | 38 | 38.08 | 1.7 | 9.56 | 71.7 | 1.937 | 7.9 | 0 | 36.33 | | | | 41608 | 115617
115721 | 40
42 | 40.07 | 1.62
1.59 | 9.36
8.73 | 69 | 1.945
1.96 | 7.88
7.84 | 0 | 38.32
40.12 | | | | 41608
41608 | 115721 | 42
44 | 41.87
44.2 | 1.54 | 8.05 | 64.7
59.5 | 1.986 | 7.79 | $0 \\ 0$ | 40.12 | | | | 41608 | 120051 | 46 | 46.21 | 1.54 | 7.28 | 53.8 | 1.994 | 7.78 | 0 | 42.45
44.46 | | | | 41608 | 120051 | 48 | 48.34 | 1.57 | 6.97 | 51.9 | 1.998 | 7.77 | 0 | 46.59 | | | | 41608 | 120139 | 50 | 50.47 | 1.59 | 6.35 | 47 | 2.001 | 7.68 | 0 | 48.72 | | | | 41608 | 120300 | 52 | 52.25 | 1.67 | 6.3 | 46.4 | 2.022 | 7.72 | 0 | 50.5 | | | | 41608 | 120519 | 54 | 53.91 | 1.69 | 5.06 | 37.6 | 2.023 | 7.72 | 0 | 52.16 | | | | 41608 | 120632 | 56 | 55.76 | 1.7 | 4.65 | 34.5 | 2.026 | 7.71 | 0 | 54.01 | | | | 41608 | 120738 | 58 | 58.28 | 1.72 | 4.02 | 30.1 | 2.024 | 7.71 | Ő | 56.53 | | | | 41608 | 120818 | 60 | 59.46 | 1.75 | 3.99 | 29.3 | 2.03 | 7.69 | 0 | 57.71 | | | | 41608 | 120936 | 62 | 62.87 | | 3.24 | | 2.038 | 7.69 | Ö | 61.12 | | | | 41608 | 121026 | 64 | | 1.86 | | 17.5 | 2.045 | 7.67 | 0 | 62.39 | Depth of | % Light | Extinction | | Date | Time | Depth | Dep25 | Temp | DO | DO% | SpCond | pН | PAR | Light Meter | Transmission | Coefficient | | MMDDY | HHMMSS | feet | feet | øС | mg/l | Sat | mS/cm | Units | æE/s/mý | feet | Average | 0.46 | | Y | | | | | | | | | | | | | | #4.40° | 02002 | 0.27 | 0.22 | 1 / | 0.75 | 07. | 4 440 | 0.22 | 1.500 | a a | 1000 | | | 51408 | 93903 | 0.25 | | 14.47 | | 97.2 | 1.418 | 8.33 | 1530 | Surface | 100% | | | 51408 | 94003 | 1 | | 14.47 | | 97.3 | 1.418 | 8.35 | 1015 | Surface | 66% | 7.00 | | 51408 | 94052 | 2 | | 14.48 | | 97.2 | 1.418 | 8.37 | 215 | 0.21 | 14% | 7.39 | | 51408 | 94134 | 3 | 2.98 | 14.48 | 9.5 | 96.9 | 1.419 | 8.39 | 313 | 1.23 | 20% | -0.31 | | 51408 | 94211 | 4 | 3.96 | 14.48 | 9.5 | 96.9 | 1.418 | 8.41 | 237 | 2.21 | 15% | 0.13 | | 51408 | 94308 | 6 | 5.99 | 14.48 | 9.5 | 96.9 | 1.418 | 8.45 | 146 | 4.24 | 10% | 0.11 | | 51408 | 94400 | 8 | 8.02 | 14.48 | 9.47 | 96.7 | 1.418 | 8.48 | 75
38 | 6.27 | 5%
2% | 0.11 | | 51408 | 94446 | 10 | 10 | 14.48 | 9.40 | 96.5 | 1.418 | 8.51 | 38 | 8.25 | 2% | 0.08 | | 3 I 4 I I X | 0.4525 | 10 | 11.00 | 1 / 10 | 0.44 | 06.2 | 1 410 | 0 5 1 | 22 | 10.24 | 1 40/ | 0.05 | |--|--|--|--|--|--|--|--|--|---|--|---|--| | 51408 | 94535 | 12 | | 14.48 | | 96.3 | 1.418 | 8.54 | 22 | 10.24 | 1.4% | 0.05 | | 51408 | 94630 | 14 | | 14.38 | | 95.5 | 1.419 | 8.54 | 11 | 12.31 | 0.7% | 0.06 | | 51408 | 94715 | 16 | | 14.36 | | 95.2 | 1.419 | 8.56 | 7 | 14.28 | 0.5% | 0.03 | | 51408 | 94805 | 18 | | 14.31 | | 94 | 1.417 | 8.57 | 5 | 16.21 | 0.3% | 0.02 | | 51408 | 94856 | 20 | | 13.52 | | 89.1 | 1.416 | 8.52 | 3 | 18.24 | 0.2% | 0.03 | | 51408 | 95008 | 22 | | 12.16 | 7.88 | 76.4 | 1.424 | 8.37 | 2 | 20.29 | 0.1% | 0.02 | | 51408 | 95102 | 24 | | 10.56 | 7.1 | 66.4 | 1.426 | 8.23 | 2 | 22.26 | 0.1% | 0.00 | | 51408 | 95152 | 26 | 25.98 | 8.7 | 6.55 | 58.6 | 1.438 | 8.05 | 2 | 24.23 | 0.1% | 0.00 | | 51408 | 95253 | 28 | 28.02 | 6.56 | 6.71 | 56.9 | 1.521 | 7.82 | 2 | 26.27 | 0.1% | 0.00 | | 51408 | 95344 | 30 | 29.95 | 5.75 | 6.77 | 56.3 | 1.575 | 7.86 | 2 | 28.2 | 0.1% | 0.00 | | 51408 | 95434 | 32 | 32.01 | 4.84 | 7.19 | 58.4 | 1.646 | 7.83 | 1 | 30.26 | 0.1% | 0.02 | | 51408 | 95536 | 34 | 33.96 | 4.62 | 6.97 | 56.3 | 1.684 | 7.81 | 0 | 32.21 | | | | 51408 | 95621 | 36 | 35.97 | 4.24 | 6.72 | 53.8 | 1.725 | 7.78 | 0 | 34.22 | | | | 51408 | 95712 | 38 | 38.05 | 3.59 | 6.73 | 52.9 | 1.806 | 7.74 | 0 | 36.3 | | | | 51408 | 95814 | 40 | 40.09 | 3 | 6.38 | 49.4 | 1.87 | 7.7 | 0 | 38.34 | | | | 51408 | 95916 | 42 | 42.01 | 2.8 | 5.89 | 45.4 | 1.876 | 7.68 | 0 | 40.26 | | | | 51408 | 100012 | 44 | 44.08 | 2.59 | 5.63 | 43.2 | 1.91 | 7.66 | 0 | 42.33 | | | | 51408 | 100112 | 46 | 46.04 | 2.33 | 5.36 | 40.8 | 1.941 | 7.66 | Ő | 44.29 | | | | 51408 | 100216 | 48 | 47.93 | 2.24 | 4.7 | 35.7 | 1.953 | 7.62 | 0 | 46.18 | | | | 51408 | 100210 | 50 | 49.91 | 2.06 | 3.58 | 27.1 | 1.987 | 7.6 | 0 | 48.16 | | | | 51408 | 100517 | 52 | 52 | 2.06 | 2.26 | 17.1 | 1.996 | 7.56 | 0 | 50.25 | | | | 51408 | 100510 | 54 | 54.1 | 2.00 | 1.01 | 7.6 | 2.013 | 7.54 | 0 | 52.35 | | | | 51408 | 100013 | 56 | 56.21 | 2.01 | 0.75 | 5.7 | 2.013 | 7.55 | 0 | 54.46 | | | | 31408 | 100/10 | 30 | 30.21 | 2.03 | 0.73 | 3.7 | 2.023 | 1.33 | U | 34.40 | | | | | | Т | | | | | | | | Danth of | 0/ T:=1-4 | Entination | | Data | TP: | Text | D 25 | т | DO | D00/ | 001 | TT | DAD | Depth of | % Light | Extinction | | Date | Time | | _ | | | | SpCond | | | | Transmission | | | | HHMMSS | feet | feet | øС | mg/l | Sat | mS/cm | Units | æE/s/mý | feet | Average | 0.23 | | Y | | | | | | | | | | | | | | 61100 | 02750 | 0.25 | 0.41 | 22.00 | 0.01 | 0.6.2 | 1 2210 | 0.21 | 0.45 | G G | 1000/ | | | 61108 | 93758 | 0.25 | | | | | 1 7210
| | | | | | | | 00055 | | 0.41 | 22.99 | | 96.3 | 1.2310 | 8.21 | 3476 | Surface | 100% | | | 61108 | 93857 | 1 | 1.07 | 23.00 | 7.99 | 96.0 | 1.2310 | 8.25 | 1286 | Surface | 37% | 0.74 | | 61108 | 94003 | 1
2 | 1.07
2.15 | 23.00
22.96 | 7.99
7.99 | 96.0
95.9 | 1.2310
1.2310 | 8.25
8.23 | 1286
1038 | Surface 0.4 | 37%
30% | 0.54 | | 61108
61108 | 94003
94112 | 1
2
3 | 1.07
2.15
2.98 | 23.00
22.96
22.96 | 7.99
7.99
7.98 | 96.0
95.9
95.8 | 1.2310
1.2310
1.2310 | 8.25
8.23
8.23 | 1286
1038
612 | Surface
0.4
1.23 | 37%
30%
18% | 0.43 | | 61108
61108
61108 | 94003
94112
94210 | 1
2
3
4 | 1.07
2.15
2.98
4.07 | 23.00
22.96
22.96
22.9 | 7.99
7.99
7.98
7.97 | 96.0
95.9
95.8
95.7 | 1.2310
1.2310
1.2310
1.2310 | 8.25
8.23
8.23
8.23 | 1286
1038
612
161 | Surface
0.4
1.23
2.32 | 37%
30%
18%
5% | 0.43
0.58 | | 61108
61108
61108 | 94003
94112
94210
94336 | 1
2
3
4
6 | 1.07
2.15
2.98
4.07
5.98 | 23.00
22.96
22.96
22.9
22.79 | 7.99
7.99
7.98
7.97
7.99 | 96.0
95.9
95.8
95.7
95.7 | 1.2310
1.2310
1.2310
1.2310
1.2330 | 8.25
8.23
8.23
8.23
8.27 | 1286
1038
612
161
106 | Surface
0.4
1.23
2.32
4.23 | 37%
30%
18%
5%
3% | 0.43
0.58
0.10 | | 61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453 | 1
2
3
4
6
8 | 1.07
2.15
2.98
4.07
5.98
7.98 | 23.00
22.96
22.96
22.9
22.79
22.65 | 7.99
7.99
7.98
7.97
7.99
7.52 | 96.0
95.9
95.8
95.7
95.7
89.8 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360 | 8.25
8.23
8.23
8.23
8.27
8.24 | 1286
1038
612
161
106
37 | Surface
0.4
1.23
2.32
4.23
6.23 | 37%
30%
18%
5%
3%
1.1% | 0.43
0.58
0.10
0.17 | | 61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619 | 1
2
3
4
6
8
10 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05 | 23.00
22.96
22.96
22.9
22.79
22.65
21.8 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620 | 8.25
8.23
8.23
8.23
8.27
8.24
7.96 | 1286
1038
612
161
106
37
12 | Surface
0.4
1.23
2.32
4.23
6.23
8.3 | 37%
30%
18%
5%
3%
1.1%
0.3% | 0.43
0.58
0.10
0.17
0.14 | | 61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453 | 1
2
3
4
6
8 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05 | 23.00
22.96
22.96
22.9
22.79
22.65 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57 | 96.0
95.9
95.8
95.7
95.7
89.8 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360 | 8.25
8.23
8.23
8.23
8.27
8.24 | 1286
1038
612
161
106
37 | Surface
0.4
1.23
2.32
4.23
6.23 | 37%
30%
18%
5%
3%
1.1% | 0.43
0.58
0.10
0.17 | | 61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619 | 1
2
3
4
6
8
10 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00 | 23.00
22.96
22.96
22.9
22.79
22.65
21.8 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620 | 8.25
8.23
8.23
8.23
8.27
8.24
7.96
7.99 | 1286
1038
612
161
106
37
12 | Surface
0.4
1.23
2.32
4.23
6.23
8.3 | 37%
30%
18%
5%
3%
1.1%
0.3% | 0.43
0.58
0.10
0.17
0.14 | | 61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742 | 1
2
3
4
6
8
10
12 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98 | 23.00
22.96
22.96
22.9
22.79
22.65
21.8
21.44 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850 | 8.25
8.23
8.23
8.23
8.27
8.24
7.96
7.99
8.12 | 1286
1038
612
161
106
37
12
5 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09 | | 61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902 | 1
2
3
4
6
8
10
12
14 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02 | 23.00
22.96
22.96
22.79
22.65
21.8
21.44
20.85 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610 | 8.25
8.23
8.23
8.23
8.27
8.24
7.96
7.99
8.12 | 1286
1038
612
161
106
37
12
5 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952 | 1
2
3
4
6
8
10
12
14
16 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99 | 23.00
22.96
22.96
22.9
22.79
22.65
21.8
21.44
20.85
18.74 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27 | 1286
1038
612
161
106
37
12
5
3 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050 | 1
2
3
4
6
8
10
12
14
16
18 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08 | 23.00
22.96
22.96
22.79
22.65
21.8
21.44
20.85
18.74
16.12 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4300 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15 | 1286
1038
612
161
106
37
12
5
3
2 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301 | 1
2
3
4
6
8
10
12
14
16
18
20 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00 | 23.00
22.96
22.96
22.9
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4300
1.4330 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04 | 1286
1038
612
161
106
37
12
5
3
2
0 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24
18.33 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414 | 1
2
3
4
6
8
10
12
14
16
18
20
22 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00 | 23.00
22.96
22.96
22.9
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4300
1.4330
1.4340 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.90 | 1286
1038
612
161
106
37
12
5
3
2
0
0 |
Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24
18.33
20.25 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00 | 23.00
22.96
22.96
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4330
1.4340
1.4450 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.90
7.76 | 1286
1038
612
161
106
37
12
5
3
2
0
0 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24
18.33
20.25
22.25 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02 | 23.00
22.96
22.96
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.32 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4330
1.4340
1.4450
1.4530 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.90
7.76
7.57 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24
18.33
20.25
22.25
24.24 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10 | 23.00
22.96
22.96
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25 | 7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.32
4.28
4.45 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4300
1.4330
1.4340
1.4450
1.4530
1.4950 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.90
7.76
7.57
7.46
7.38 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24
18.33
20.25
22.25
24.24
26.27
28.35 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851
100000 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10
32.04 | 23.00
22.96
22.96
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25
6.14 | 7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.32
4.28
4.45
4.49 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1
37.4 | 1.2310
1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4300
1.4340
1.4450
1.4530
1.4530
1.4950
1.5410
1.6160 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.90
7.76
7.57
7.46
7.38
7.36 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0
0 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24
18.33
20.25
22.25
24.24
26.27
28.35
30.29 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851
100000
100055 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10
32.04
34.07 | 23.00
22.96
22.96
22.9
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25
6.14
5.54 | 7.99
7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.32
4.45
4.49
4.09 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1
37.4
33.5 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4300
1.4330
1.4340
1.4530
1.4530
1.5410
1.6160
1.6690 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.76
7.57
7.46
7.38
7.36
7.31 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0
0
0 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24
18.33
20.25
22.25
24.24
26.27
28.35
30.29
32.32 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851
100000
100055
100150 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10
32.04
34.07
36.04 | 23.00
22.96
22.96
22.9
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25
6.14
5.54
4.86 | 7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.28
4.45
4.49
4.09
3.88 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1
37.4
33.5
31.3 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4300
1.4330
1.4340
1.4530
1.4530
1.5410
1.6160
1.6690
1.7400 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.76
7.36
7.36
7.31
7.35 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0
0
0
0 | Surface
0.4
1.23
2.32
4.23
6.23
8.3
10.25
12.23
14.27
16.24
18.33
20.25
22.25
24.24
26.27
28.35
30.29
32.32
34.29 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851
100000
100055
100150
100254 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38 |
1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10
32.04
34.07
36.04
37.98 | 23.00
22.96
22.96
22.99
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25
6.14
5.54
4.86
4.30 | 7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.32
4.49
4.09
3.88
3.59 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1
37.4
33.5
31.3
28.5 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4300
1.4330
1.4340
1.4450
1.4530
1.4530
1.5410
1.6160
1.6690
1.7400
1.7840 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.90
7.76
7.36
7.36
7.31
7.35
7.26 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0
0
0
0
0 | Surface 0.4 1.23 2.32 4.23 6.23 8.3 10.25 12.23 14.27 16.24 18.33 20.25 22.25 24.24 26.27 28.35 30.29 32.32 34.29 36.23 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851
100000
100055
100150
100254
100346 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10
32.04
34.07
36.04
37.98
39.89 | 23.00
22.96
22.96
22.99
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25
6.14
5.54
4.86
4.30
3.83 | 7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.49
4.09
3.88
3.59
3.27 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1
37.4
33.5
31.3
28.5
25.7 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4330
1.4340
1.4450
1.4530
1.4530
1.4950
1.5410
1.6160
1.7400
1.7840
1.8330 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.76
7.57
7.46
7.38
7.36
7.31
7.35
7.26
7.20 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0
0
0
0
0
0 | Surface 0.4 1.23 2.32 4.23 6.23 8.3 10.25 12.23 14.27 16.24 18.33 20.25 22.25 24.24 26.27 28.35 30.29 32.32 34.29 36.23 38.14 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851
100000
100055
100150
100254
100346
100435 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10
32.04
34.07
36.04
37.98
39.89
41.92 | 23.00
22.96
22.96
22.99
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25
6.14
5.54
4.86
4.30
3.83
3.41 | 7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.32
4.45
4.49
4.09
3.88
3.59
3.27
2.88 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1
37.4
33.5
31.3
28.5
25.7
22.3 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4330
1.4340
1.4450
1.4530
1.4530
1.4950
1.5410
1.6160
1.7400
1.7840
1.8330
1.8700 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.76
7.57
7.46
7.38
7.36
7.31
7.35
7.26
7.20
7.17 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0
0
0
0
0
0
0 | Surface 0.4 1.23 2.32 4.23 6.23 8.3 10.25 12.23 14.27 16.24 18.33 20.25 22.25 24.24 26.27 28.35 30.29 32.32 34.29 36.23 38.14 40.17 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851
100000
100055
100150
100254
100346
100435
100534 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10
32.04
34.07
36.04
37.98
39.89
41.92
43.98 | 23.00
22.96
22.96
22.99
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25
6.14
5.54
4.86
4.30
3.83
3.41
2.99 | 7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.32
4.45
4.49
4.09
3.88
3.59
3.27
2.88
2.45 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1
37.4
33.5
31.3
28.5
25.7
22.3
18.8 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4330
1.4340
1.4450
1.4530
1.4530
1.450
1.5410
1.6160
1.7840
1.7840
1.8330
1.8700
1.9090 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.90
7.76
7.38
7.36
7.31
7.35
7.26
7.20
7.17 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0
0
0
0
0
0
0
0 | Surface 0.4 1.23 2.32 4.23 6.23 8.3 10.25 12.23 14.27 16.24 18.33 20.25 22.25 24.24 26.27 28.35 30.29 32.32 34.29 36.23 38.14 40.17 42.23 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108
61108 | 94003
94112
94210
94336
94453
94619
94742
94902
94952
95050
95301
95414
95516
95621
95724
95851
100000
100055
100150
100254
100346
100435 | 1
2
3
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42 | 1.07
2.15
2.98
4.07
5.98
7.98
10.05
12.00
13.98
16.02
17.99
20.08
22.00
24.00
25.99
28.02
30.10
32.04
34.07
36.04
37.98
39.89
41.92 | 23.00
22.96
22.96
22.99
22.79
22.65
21.8
21.44
20.85
18.74
16.12
15.16
13.96
12.43
10.93
8.64
7.25
6.14
5.54
4.86
4.30
3.83
3.41
2.99
2.81 | 7.99
7.98
7.97
7.99
7.52
6.57
6.35
6.37
7.11
6.56
5.87
5.20
4.78
4.32
4.45
4.49
4.09
3.88
3.59
3.27
2.88 | 96.0
95.9
95.8
95.7
95.7
89.8
77.2
74.1
73.5
78.7
68.8
60.2
52.1
46.2
40.4
37.9
38.1
37.4
33.5
28.5
25.7
22.3
18.8
15.4 | 1.2310
1.2310
1.2310
1.2330
1.2360
1.1620
1.1850
1.2610
1.4210
1.4330
1.4340
1.4450
1.4530
1.4530
1.4950
1.5410
1.6160
1.7840
1.7840
1.8330
1.8700
1.9090
1.9270 | 8.25
8.23
8.23
8.27
8.24
7.96
7.99
8.12
8.27
8.15
8.04
7.76
7.57
7.46
7.38
7.36
7.31
7.35
7.26
7.20
7.17 | 1286
1038
612
161
106
37
12
5
3
2
0
0
0
0
0
0
0
0
0
0 | Surface 0.4 1.23 2.32 4.23 6.23 8.3 10.25 12.23 14.27 16.24 18.33 20.25 22.25 24.24 26.27 28.35 30.29 32.32 34.29 36.23 38.14 40.17 | 37%
30%
18%
5%
3%
1.1%
0.3%
0.1% | 0.43
0.58
0.10
0.17
0.14
0.09
0.04 | | 61108
61108
61108 | 100831
100940
101113
101324 | 50
52
54
56 | 49.96
51.98
53.97
55.95 | 2.57
2.44
2.44
2.35 | 1.41
1.16
0.36
0.25 | 10.7
8.8
2.8
1.9 | 1.9530
1.9670
1.9730
1.9880 | 7.13
7.12
7.11
7.09 | 0
0
0
0 | 48.21
50.23
52.22
54.2 | | | |-------------------------|--------------------------------------|----------------------|----------------------------------|------------------------------|------------------------------|---------------------------|--------------------------------------|------------------------------|------------------|---------------------------------
-------------------------|------------------------| | 61108 | 101444 | 58 | 58.05 | 2.35 | 0.22 | 1.7 | 1.9910 | 7.10 | 0 | 56.3 | | | | 61108 | 101600 | 60 | 60.00 | 2.34 | 0.22 | 1.7 | 1.9950 | 7.10 | 0 | 58.25 | | | | 61108 | 101629 | 62 | 61.93 | 2.32 | 0.21 | 1.6 | 1.9970 | 7.12 | 0 | 60.18 | | | | 61108 | | 64 | 64.00 | 2.33 | 0.21 | 1.6 | 1.9950 | 7.13 | 0 | 62.25 | | | | | | Text | | | | | | | | Depth of | 0/ Light | Extinction | | Date | Time | | Dep25 | Temn | DΩ | DO% | SpCond | nН | PAR | | % Light
Transmission | | | | HHMMSS | feet | feet | øС | mg/l | Sat | | | æE/s/mý | _ | Average | 0.25 | | Y | THIMMINDS | 1001 | 1001 | øC. | 1115/1 | Sat | mo/em | Omis | &L/S/IIIy | Teet | Tivelage | 0.23 | | | | | | | | | | | | | | | | 70908 | 91734 | 0.25 | 0.54 | 24.83 | 8.57 | 106.9 | 1.23 | 8.71 | 4152 | Surface | 100% | | | 70908 | 91820 | 1 | 0.93 | 24.84 | 8.55 | 106.7 | 1.23 | 8.72 | 4010 | Surface | 97% | | | 70908 | 91920 | 2 | 2.02 | 24.83 | 8.54 | 106.6 | 1.23 | 8.73 | 1676 | 0.27 | 40% | 3.23 | | 70908 | 92009 | 3 | 2.97 | 24.83 | 8.51 | 106.2 | 1.23 | 8.71 | 1386 | 1.22 | 33% | 0.16 | | 70908 | 92116 | 4 | 3.94 | 24.84 | 8.5 | 106.1 | 1.23 | 8.75 | 687 | 2.19 | 17% | 0.32 | | 70908 | 92259 | 6 | 6 | 24.81 | 8.52 | 106.2 | 1.23 | 8.76 | 467 | 4.25 | 11% | 0.09 | | 70908 | 92416 | 8 | 7.97 | 24.79 | 8.53 | 106.3 | 1.23 | 8.76 | 296 | 6.22 | 7% | 0.07 | | 70908 | 92543 | 10 | 10.01 | 24.75 | 8.54 | 106.4 | 1.23 | 8.76 | 159 | 8.26 | 4% | 0.08 | | 70908 | 92654 | 12 | 12.06 | 24.73 | 8.59 | 106.9 | 1.23 | 8.77 | 85 | 10.31 | 2% | 0.06 | | 70908 | 92827 | 14 | 14.02 | 22.55 | 5.24 | 62.7 | 1.262 | 8.39 | 51 | 12.27 | 1.2% | 0.04 | | 70908 | 93009 | 16 | 15.93 | 20.52 | 0.64 | 7.3 | 1.291 | 7.87 | 31 | 14.18 | 0.7% | 0.04 | | 70908 | 93230 | 18 | 18.1 | 17.73 | 0.19 | 2.1 | 1.386 | 7.65 | 18 | 16.35 | 0.4% | 0.03 | | 70908 | 93402 | 20 | 20.02 | 14.25 | 0.28 | 2.8 | 1.443 | 7.45 | 11 | 18.27 | 0.3% | 0.03 | | 70908 | 93554 | 22 | 22 | 11 | 0.59 | 5.5 | 1.512 | 7.36 | 8 | 20.25 | 0.2% | 0.02 | | 70908 | 93749 | 24 | 24.01 | 8.37 | 1.46 | 12.8 | 1.635 | 7.25 | 5 | 22.26 | 0.1% | 0.02 | | 70908 | 93907 | 26 | 25.99 | 7.97 | 1.56 | 13.6 | 1.662 | 7.23 | 4 | 24.24 | 0.1% | 0.01 | | 70908 | 94201 | 28 | 28 | 7.71 | 1.58 | 13.7 | 1.655 | 7.22 | 3 | 26.25 | 0.1% | 0.01 | | 70908 | 94305 | 30 | 29.96 | 7.61 | 1.57 | 13.6 | 1.659 | 7.22 | 3 | 28.21 | 0.1% | 0.00 | | 70908 | 94409 | 32 | 31.94 | 7.36 | 1.62 | 13.9 | 1.665 | 7.25 | 2 | 30.19 | 0.05% | 0.01 | | 70908 | 94543 | 34 | 34.03 | 7.21 | 1.56 | 13.3 | 1.672 | 7.21 | 0 | 32.28 | | | | 70908 | 94543 | 36 | 36 | 7 | 1.51 | 12.9 | 1.679 | 7.21 | 0 | 34.25 | | | | 70908 | 94913 | 38 | 38.01 | 6.54 | 1.42 | 11.9 | 1.701 | 7.18 | 0 | 36.26 | | | | 70908 | 95040 | 40 | 40.05 | 6.16 | 1.57 | 13.1 | 1.708 | 7.18 | 0 | 38.3 | | | | 70908 | 95453 | 42 | 42.16 | 5.76 | 1.28 | 10.6 | 1.718 | 7.15 | 0 | 40.41 | | | | 70908 | 95616 | 44 | | 5.33 | | 6.7 | 1.754 | 7.13 | 0 | 41.93 | | | | 70908 | 95828 | 46 | 45.58 | 5.02 | 0.59 | 4.8 | 1.774 | 7.13 | 0 | 43.83 | | | | 70908 | 100027 | 48 | 48.16 | | 0.35 | 2.8 | 1.807 | 7.12 | 0 | 46.41 | | | | 70908 | 100140 | 50 | 49.91 | 4.04 | 0.22 | 1.8 | 1.851 | 7.09 | 0 | 48.16 | | | | 70908 | 100240 | 52 | 51.7 | 3.48 | 0.2 | 1.6 | 1.906 | 7.07 | 0 | 49.95 | | | | 70908 | 100420 | 54 | 53.52 | 2.92 | 0.2 | 1.5 | 1.956 | 7.04 | 0 | 51.77 | | | | 70908 | 100517 | 56 | 55.91 | 2.77 | 0.2 | 1.5 | 1.97 | 7.04 | 0 | 54.16 | | | | 70908 | 100612 | 58 | 58.04 | 2.73 | 0.2 | 1.5 | 1.975 | 7.06 | 0 | 56.29 | | | | 70908 | 100704 | 60 | 60.01 | 2.72 | 0.2 | 1.5 | 1.974 | 7.04 | 0 | 58.26 | | | | 70908 | 100804 | 62 | 62.12 | 2.69 | 0.19 | 1.5 | 1.98 | 7.03 | 0 | 60.37 | | | | 70908 | 100856 | 64 | 64.22 | 2.67 | 0.19 | 1.5 | 1.99 | 7.02 | 0 | 62.47 | | | | | | Text | | | | | | | | Donth of | % Light | Extinction | | Date | Time | | Dep25 | Temp | DΩ | DO% | SpCond | nЦ | PAR | Depth of | % Light
Transmission | Extinction Coefficient | | | HHMMSS | | feet | øС | | | | | æE/s/mý | | Average | 0.37 | | Y | 111111111100 | 1001 | icct | уC | 1118/1 | Dai | 1113/0111 | Omts | will still y | Teet | riverage | 0.57 | | 1 | | | | | | | | | | | | | | 72408 | 145125 | 0.25 | 0.75 | 26.79 | 9.02 | 116.2 | 1.1860 | 8.55 | 4344 | Surface | 100% | | | 72408 | 145215 | 1 | 1.00 | 26.78 | 9.03 | 116.3 | 1.1860 | 8.57 | 4263 | Surface | 98% | | |-------|--------|-------|-------|-------|------|-------|--------|-------|---------|-------------|--------------|-------------| | 72408 | 145311 | 2 | 2.00 | 26.78 | 9.00 | 115.9 | 1.1860 | 8.60 | 2767 | 0.25 | 64% | 1.73 | | 72408 | 145357 | 4 | 3.99 | 26.66 | 8.95 | 115.0 | 1.1860 | 8.66 | 1054 | 2.24 | 24% | 0.43 | | 72408 | 145442 | 6 | 6.10 | 26.52 | 8.74 | 112.1 | 1.1860 | 8.68 | 495 | 4.35 | 11% | 0.17 | | 72408 | 145535 | 8 | 7.95 | 25.51 | 8.34 | 105.0 | 1.1860 | 8.65 | 292 | 6.2 | 7% | 0.09 | | 72408 | 145646 | 10 | 10.15 | 25.11 | 8.31 | 103.8 | 1.1830 | 8.64 | 150 | 8.4 | 3% | 0.08 | | 72408 | 145746 | 12 | 11.87 | 25.03 | 7.19 | 89.7 | 1.1860 | 8.56 | 76 | 10.12 | 2% | 0.07 | | 72408 | 145916 | 14 | | 23.86 | 3.39 | 41.4 | 1.2050 | 8.21 | 38 | 12.23 | 0.9% | 0.06 | | 72408 | 150036 | 16 | | 21.89 | 0.55 | 6.4 | 1.2430 | 7.93 | 26 | 14.2 | 0.6% | 0.03 | | 72408 | 150147 | 18 | | 17.89 | 0.20 | 2.2 | 1.3440 | 7.73 | 15 | 16.24 | 0.3% | 0.03 | | 72408 | 150255 | 20 | 20.1 | 13.59 | 0.20 | 2.0 | 1.4590 | 7.56 | 10 | 18.35 | 0.2% | 0.02 | | 72408 | 150356 | 22 | 22.02 | | 0.21 | 2.0 | 1.5840 | 7.43 | 7 | 20.27 | 0.2% | 0.02 | | 72408 | 150450 | 24 | 24.01 | 8.79 | 0.44 | 3.9 | 1.6180 | 7.35 | 5 | 22.26 | 0.1% | 0.02 | | 72408 | 150551 | 26 | 26.06 | 8.45 | 0.51 | 4.5 | 1.6370 | 7.31 | 4 | 24.31 | 0.1% | 0.02 | | 72408 | 150703 | 28 | 28.00 | 8.25 | 0.54 | 4.7 | 1.6340 | 7.28 | 3 | 26.25 | 0.1% | 0.01 | | 72408 | 150703 | 30 | 30.08 | 8.17 | 0.53 | 4.6 | 1.6320 | 7.26 | 0 | 28.33 | 0.170 | 0.01 | | 72408 | 150807 | 32 | 31.97 | 8.01 | 0.54 | 4.7 | 1.6320 | 7.26 | 0 | 30.22 | | | | | | | 34.00 | 7.96 | 0.54 | 4.7 | 1.6400 | 7.25 | | 32.25 | | | | 72408 | 150958 | 34 | | | | | | | 0 | | | | | 72408 | 151057 | 36 | 36.04 | 7.63 | 0.51 | 4.4 | 1.6500 | 7.23 | 0 | 34.29 | | | | 72408 | 151230 | 38 | 38.16 | 7.44 | 0.45 | 3.9 | 1.6550 | 7.21 | 0 | 36.41 | | | | 72408 | 151335 | 40 | 39.78 | 7.17 | 0.45 | 3.8 | 1.6670 | 7.20 | 0 | 38.03 | | | | 72408 | 151508 | 42 | 42.07 | 7.05 | 0.40 | 3.4 | 1.6700 | 7.19 | 0 | 40.32 | | | | 72408 | 151653 | 44 | 44.05 | 6.95 | 0.37 | 3.1 | 1.6720 | 7.17 | 0 | 42.3 | | | | 72408 | 151817 | 46 | 46.02 | 6.14 | 0.23 | 1.9 | 1.6970 | 7.16 | 0 | 44.27 | | | | 72408 | 151913 | 48 | 47.93 | 5.08 | 0.20 | 1.6 | 1.7630 | 7.14 | 0 | 46.18 | | | | 72408 | 152007 | 50 | 50.02 | 4.13 | 0.20 | 1.6 | 1.8380 | 7.11 | 0 | 48.27 | | | | 72408 | 152141 | 52 | 51.81 | 3.49 | 0.20 | 1.6 | 1.9030 | 7.09 | 0 | 50.06 | | | | 72408 | 152253 | 54 | 54.02 | 3.14 | 0.20 | 1.5 | 1.9320 | 7.04 | 0 | 52.27 | | | | 72408 | 152406 | 56 | 56.03 | 2.91 | 0.19 | 1.5 | 1.9490 | 7.04 | 0 | 54.28 | | | | 72408 | 152512 | 58 | 58.00 | 2.94 | 0.19 | 1.5 | 1.9480 | 7.02 | 0 | 56.25 | | | | 72408 | 152548 | 60 | 60.02 | 2.88 | 0.19 | 1.5 | 1.9560 | 7.03 | 0 | 58.27 | | | | 72408 | 152624 | 62 | 61.98 | 2.84 | 0.19 | 1.5 | 1.9570 | 7.04 | 0 | 60.23 | | | | 72408 | 152658 | 64 | 63.95 | 2.85 | 0.19 | 1.5 | 1.9260 | 7.02 | 0 | 62.2 | Text | | | | | | | | Depth of | % Light | Extinction | | Date | Time | Depth | Dep25 | Temp | DO | DO% | SpCond | pН | PAR | Light Meter | Transmission | Coefficient | | MMDDY | HHMMSS | feet | feet | øС | mg/l | Sat | mS/cm | Units | æE/s/mý | feet | Average | 0.06 | | Y | 81308 | 90418 | 0.25 | 0.44 | 24.52 | | | 1.212 | 8.58 | 4535 | Surface | 100% | | | 81308 | 90550 | 1 | 1.04 | 24.48 | | 111.2 | 1.212 | 8.59 | 4458 | Surface | 98% | 0.08 | | 81308 | 90646 | 2 | 1.97 | 24.48 | | 111.2 | 1.212 | 8.59 | 1798 | 0.22 | 40% | 0.73 | | 81308 | 90749 | 3 | 3.00 | 24.42 | 8.96 | 111.3 | 1.212 | 8.60 | 1210 | 1.25 | 27% | 0.17 | | 81308 | 90838 | 4 | 4.02 | 24.41 | 9.00 | 111.8 | 1.211 | 8.62 | 1019 | 2.27 | 22% | 0.04 | | 81308 | 90927 | 6 | 5.99 | 24.39 | 9.02 | 112.0 | 1.211 | 8.62 | 513 | 4.24 | 11% | 0.11 | | 81308 | 91024 | 8 | 8.02 | 24.38 | 9.01 | 111.8 | 1.211 | 8.62 | 305 | 6.27 | 7% | 0.06 | | 81308 | 91123 | 10 | 9.98 | 24.36 | 9.00 | 111.6 | 1.211 | 8.62 | 181 | 8.23 | 4% | 0.05 | | 81308 | 91415 | 12 | 11.99 | 24.21 | 8.70 | 107.6 | 1.211 | 8.61 | 112 | 10.24 | 2% | 0.04 | | 81308 | 91535 | 14 | | 23.87 | 8.62 | 106.0 | 1.212 | 8.59 | 67 | 12.27 | 1.5% | 0.04 | | 81308 | 91721 | 16 | | 22.65 | 5.49 | 65.9 | 1.238 | 8.28 | 40 | 14.3 | 0.9% | 0.03 | | 81308 | 91918 | 18 | 18.01 | | 0.26 | 2.9 | 1.35 | 7.70 | 24 | 16.26 | 0.5% | 0.03 | | 81308 | 92008 | 20 | 20.02 | | 0.26 | 2.5 | 1.556 | 7.52 | 14 | 18.27 | 0.3% | 0.03 | | 81308 | 92117 | 22 | 21.97 | 9.71 | 0.25 | 2.3 | 1.631 | 7.38 | 10 | 20.22 | 0.2% | 0.02 | | 81308 | 92249 | 24 | 24.02 | 8.83 | 0.32 | 2.8 | 1.639 | 7.3 | 7 | 22.27 | 0.2% | 0.02 | | 81308 | 92344 | 26 | 25.98 | 8.68 | 0.32 | 2.8 | 1.639 | 7.28 | 5 | 24.23 | 0.1% | 0.01 | | 81308 | 92529 | 28 | 28.00 | 8.55 | 0.35 | 3.1 | 1.637 | 7.24 | 4 | 26.25 | 0.1% | 0.01 | | 01200 | 14347 | ۷٥ | 20.00 | 0.55 | 0.55 | ا. ر | 1.037 | 1.4 | 4 | 20.23 | 0.1/0 | 0.01 | | 81308
81308
81308
81308
81308 | 92726
93006
93128
93231
93404 | 30
32
34
36
38 | 29.97
32.05
34.02
36.04
38.38 | 8.43
8.33
8.16
8.09
7.9
7.8 | 0.29
0.23
0.22
0.22
0.21
0.20 | 2.6
2.0
1.9
1.9 | 1.639
1.642
1.645
1.647
1.654
1.658 | 7.24
7.20
7.19
7.19
7.18
7.19 | 4
3
3
2
2 | 28.22
30.3
32.27
34.29
36.63 | 0.1%
0.1%
0.1%
0.04%
0.04% | 0.00
0.01
0.00
0.01
0.00 | |---|---
----------------------------|---|--|--|----------------------------------|--|--|-----------------------------|---|--|--------------------------------------| | 81308
81308
81308
81308
81308 | 93501
93709
93812
94012
94128 | 40
42
44
46
48 | 40.09
42.03
44.00
46.05
48.08 | 7.69
7.53
7.29
6.67 | 0.20
0.19
0.20
0.20 | 1.7
1.7
1.7
1.7 | 1.655
1.666
1.671
1.689 | 7.17
7.16
7.15
7.14 | 2
1
0
0
0 | 38.34
40.28
42.25
44.3
46.33 | 0.04%
0.02% | 0.00
0.02 | | 81308
81308
81308
81308 | 94300
94430
94519
94615 | 50
52
54
56 | 50.06
51.96
54.01
55.99 | 5.41
4.47
4.03
3.66 | 0.20
0.20
0.20
0.19 | 1.6
1.6
1.6
1.5 | 1.77
1.852
1.881
1.917 | 7.11
7.08
7.08
7.03 | 0
0
0
0 | 48.31
50.21
52.26
54.24 | | | | 81308
81308
81308
81308 | 94720
94817
94859
94947 | 58
60
62
64 | 58.01
59.85
61.88
63.99 | 3.2
3.13
3.07
3.03 | 0.20
0.20
0.20
0.19 | 1.5
1.5
1.5
1.5 | 1.945
1.951
1.955
1.965 | 7.00
6.99
7.00
6.94 | 0
0
0
0 | 56.26
58.1
60.13
62.24 | | | | Date
MMDDY
Y | Time
HHMMSS | Text
Depth
feet | Dep25
feet | Temp
øC | DO
mg/l | DO%
Sat | SpCond
mS/cm | | PAR
æE/s/mý | Depth of
Light Meter
feet | % Light
Transmission
Average | Extinction
Coefficient
0.09 | | 91008
91008
91008
91008 | 92107
92157
92301
92401 | 0.25 | 0.29
1.02
2.00 | 20.46
20.50
20.49
20.37 | | 107.3 | | 8.57
8.58
8.59
8.59 | 4020
4214
1865
890 | Surface
Surface
0.25
1.26 | 100%
105%
46% | -0.19
0.65 | | 91008
91008
91008
91008
91008 | 92504
92525
92625
92801
92917 | 3
4
6
8
10 | 3.01
4.02
6.05
8.00 | 20.25
20.23
20.07
19.89 | 9.29
9.27
9.38 | 105.0
104.7
105.6
103.1 | 1.1630
1.1630
1.1640
1.1630
1.1630 | 8.59
8.62
8.59
8.58
8.57 | 880
383
196
104 | 2.27
4.3
6.25
8.29 | 22%
22%
10%
5%
3% | 0.33
0.00
0.13
0.08
0.06 | | 91008
91008
91008
91008 | 93141
93304
93424
93558 | 12
14
16
18 | 11.98
13.96 | 19.74
19.65
19.45 | 8.93
7.96 | 99.9
88.9
82.1
55.0 | 1.1620
1.1680
1.1850
1.2290 | 8.52
8.45
8.35
8.13 | 56
30
15
9 | 10.23
12.21
14.29
16.28 | 1.4%
0.7%
0.4%
0.2% | 0.05
0.04
0.04
0.03 | | 91008
91008
91008
91008 | 93852
93942
94037
94132 | 20
22
24
26 | 20.08
22.01 | 16.58
13.53
10.19
9.08 | 0.27
0.27 | 2.8
2.6
2.1
2.0 | 1.4180
1.6090
1.6570
1.6600 | 7.62
7.51
7.41
7.35 | 5
4
3
0 | 18.33
20.26
22.25
24.3 | 0.1%
0.1%
0.1% | 0.03
0.01
0.01 | | 91008
91008
91008
91008 | 94316
94431
94538
94645 | 28
30
32
34 | 28.01
30.10
31.97
34.04 | 8.83
8.69
8.61
8.54 | 0.22
0.21
0.21
0.21 | 2.0
1.8
1.8
1.8 | 1.6600
1.6610
1.6660
1.6650 | 7.27
7.25
7.21
7.20 | 0
0
0
0 | 26.26
28.35
30.22
32.29 | | | | 91008
91008
91008
91008
91008 | 94803
94910
95023
95204
95348 | 36
38
40
42 | 36.00
37.98
39.97
41.99
44.06 | 8.49
8.35
8.23
8.13 | 0.21
0.2
0.2
0.2 | 1.8
1.8
1.8
1.7 | 1.6670
1.6680
1.6700
1.6730
1.6760 | 7.20
7.18
7.15
7.15
7.13 | 0
0
0
0 | 34.25
36.23
38.22
40.24
42.31 | | | | 91008
91008
91008
91008
91008 | 95348
95449
95537
95632
95759 | 44
46
48
50
52 | 44.06
46.04
48.00
49.99
51.99 | 7.94
7.84
7.45
6.69
5.43 | 0.2
0.2
0.2
0.2
0.2 | 1.7
1.7
1.7
1.7
1.6 | 1.6800
1.6910
1.7220
1.8310 | 7.13
7.06
7.12
7.10
7.05 | 0
0
0
0 | 42.31
44.29
46.25
48.24
50.24 | | | | 91008
91008
91008 | 95852
95956
100047 | 54
56
58 | 54.00
56.08
57.97 | 4.33
3.95
3.63 | 0.2
0.2
0.2 | 1.6
1.6
1.5 | 1.9300
1.9520
1.9720 | 7.01
6.97
6.94 | 0
0
0 | 52.25
54.33
56.22 | | | | 91008
91008 | 100156
100258 | 60
62 | 60.03
61.99 | 3.59
3.45 | 0.2 | 1.5
1.5 | 1.9710
1.9740 | 6.90
6.89 | 0 | 58.28
60.24 | | | |--------------------|------------------|-----------------------|----------------|--------------|------------|------------|------------------|--------------|----------------|----------------|------------------------------------|-----------------------------------| | 91008 | 100352 | 64 | 63.98 | 3.34 | 0.2 | 1.5 | 1.9780 | 6.83 | 0 | 62.23 | | | | Date
MMDDY
Y | Time
HHMMSS | Text
Depth
feet | Dep25
feet | Temp
øC | DO
mg/l | DO%
Sat | SpCond
mS/cm | | PAR
æE/s/mý | | % Light
Transmission
Average | Extinction
Coefficient
0.14 | | 110508 | 81723 | 0.25 | 0.28 | 11 44 | 10.24 | 96.9 | 1.1810 | 6.94 | 3011 | Surface | 100% | | | 110508 | 81850 | 1 | 1.07 | 11.44 | | 96.5 | 1.1810 | 7.27 | 3172 | Surface | 100% | -0.19 | | 110508 | 81958 | 2 | 2.03 | | 10.21 | 96.4 | 1.1810 | 7.42 | 565 | 0.28 | 19% | 1.37 | | 110508 | 82048 | 3 | 3.01 | 11.41 | | 96.2 | 1.1810 | 7.5 | 339 | 1.26 | 11% | 0.23 | | 110508 | 82136 | 4 | 3.99 | 11.40 | | 96.2 | 1.1810 | 7.58 | 303 | 2.24 | 10% | 0.03 | | 110508 | 82241 | 6 | 5.98 | 11.41 | | 96.1 | 1.1810 | 7.65 | 132 | 4.23 | 4% | 0.13 | | 110508 | 82343 | 8 | 8.02 | 11.35 | | 95.8 | 1.1810 | 7.69 | 63 | 6.27 | 2% | 0.09 | | 110508 | 82438 | 10 | 9.97 | 10.61 | | 90.9 | 1.1790 | 7.67 | 35 | 8.22 | 1.2% | 0.06 | | 110508 | 82535 | 12 | 12.02 | | 9.49 | 87.3 | 1.1780 | 7.66 | 19 | 10.27 | 0.6% | 0.05 | | 110508 | 82617 | 14 | 14.03 | 9.97 | 9.43 | 86.2 | 1.1770 | 7.66 | 11 | 12.28 | 0.4% | 0.04 | | 110508 | 82716 | 16 | 15.97 | 9.74 | 9.21 | 83.8 | 1.1770 | 7.63 | 8 | 14.22 | 0.3% | 0.02 | | 110508 | 82801 | 18 | 18.01 | 9.60 | 9.03 | 81.8 | 1.1790 | 7.6 | 5 | 16.26 | 0.2% | 0.03 | | 110508 | 82915 | 20 | 20.03 | 9.43 | 8.64 | 78 | 1.1780 | 7.57 | 4 | 18.28 | 0.1% | 0.01 | | 110508 | 83006 | 22 | 22.00 | 9.37 | 8.51 | 76.7 | 1.1790 | 7.56 | 3 | 20.25 | 0.1% | 0.01 | | 110508 | 83121 | 24 | 24.03 | 9.24 | 8.35 | 75 | 1.1810 | 7.54 | 0 | 22.28 | | | | 110508 | 83209 | 26 | 26.01 | 9.16 | 8.26 | 74 | 1.1790 | 7.53 | 0 | 24.26 | | | | 110508 | 83310 | 28 | 28.03 | 9.09 | 8.05 | 72.1 | 1.1830 | 7.52 | 0 | 26.28 | | | | 110508 | 83405 | 30 | 30.01 | 8.99 | 7.53 | 67.3 | 1.1960 | 7.49 | 0 | 28.26 | | | | 110508 | 83452 | 32 | 32.00 | 8.87 | 7.23 | 64.4 | 1.2230 | 7.45 | 0 | 30.25 | | | | 110508 | 83542 | 34 | 34.00 | 8.77 | 6.40 | 56.9 | 1.2480 | 7.41 | 0 | 32.25 | | | | 110508 | 83637 | 36 | 36.05 | 8.72 | 5.98 | 53.1 | 1.2620 | 7.38 | 0 | 34.3 | | | | 110508 | 83724 | 38 | 38.01 | 8.69 | 5.68 | 50.4 | 1.2660 | 7.36 | 0 | 36.26 | | | | 110508 | 83759 | 40 | 40.00 | 8.63 | 5.31 | 47.0 | 1.2920 | 7.33 | 0 | 38.25 | | | | 110508 | 83850 | 42 | 42.01 | 8.39 | 3.46 | 30.4 | 1.3630 | 7.27 | 0 | 40.26 | | | | 110508 | 83926 | 44 | 44.03 | 7.72 | 1.40 | 12.2 | 1.6280 | 7.18 | 0 | 42.28 | | | | 110508 | 84020 | 46 | 46.05 | 6.89 | 0.43 | 3.7 | 1.6880 | 7.1 | 0 | 44.3 | | | | 110508 | 84054 | 48 | 48.06 | 6.62 | 0.33 | 2.8 | 1.7030 | 7.06 | 0 | 46.31 | | | | 110508 | 84218 | 50 | 50.02 | 6.25 | 0.27 | 2.3 | 1.7390 | 7.00 | 0 | 48.27 | | | | 110508 | 84432 | 52 | 52.04 | 5.72 | 0.25 | 2 | 1.7870 | 6.92 | 0 | 50.29 | | | | 110508 | 84452 | 54 | 53.98 | 5.46 | 0.25 | 2 | 1.8200 | 6.92 | 0 | 52.23 | | | | 110508 | 84627 | 56 | 55.93 | 5.06 | 0.23 | 1.9 | 1.8670 | 6.85 | 0 | 54.18 | | | | 110508 | 84730 | 58 | 58.08 | 4.77 | 0.23 | 1.9 | 1.8920 | 6.8 | 0 | 56.33 | | | | 110508 | 84821 | 60 | 60.05 | 4.56 | 0.23 | 1.8 | 1.914 | 6.77 | 0 | 58.3 | | | | 110508 | 84935 | 62 | 61.82 | 4.5 | 0.23 | 1.8 | 1.917 | 6.73 | 0 | 60.07 | | | | 110508 | 85017 | 64 | 63.98 | 4.44 | 0.22 | 1.8 | 1.919 | 6.72 | 0 | 62.23 | | | | APPENDIX C. INTERPRETING YOUR LAKE'S WATER QUALITY | |--| | DATA | | | | | | | | | Lakes possess a unique set of physical and chemical characteristics that will change over time. These in-lake water quality characteristics, or parameters, are used to describe and measure the quality of lakes, and they relate to one another in very distinct ways. As a result, it is virtually impossible to change any one component in or around a lake without affecting several other components, and it is important to understand how these components are linked. The following pages will discuss the different water quality parameters measured by Lake County Health Department staff, how these parameters relate to each other, and why the measurement of each parameter is important. The median values (the middle number of the data set, where half of the numbers have greater values, and half have lesser values) of data collected from Lake County lakes from 2000-2008 will be used in the following discussion. ## **Temperature and Dissolved Oxygen:** Water temperature fluctuations will occur in response to changes in air temperatures, and can have dramatic impacts on several parameters in the lake. In the spring and fall, lakes tend to have uniform, well-mixed conditions throughout the water column (surface to the lake bottom). However, during the summer, deeper lakes will separate into distinct water layers. As surface water temperatures increase with increasing
air temperatures, a large density difference will form between the heated surface water and colder bottom water. Once this difference is large enough, these two water layers will separate and generally will not mix again until the fall. At this time the lake is thermally stratified. The warm upper water layer is called the *epilimnion*, while the cold bottom water layer is called the *hypolimnion*. In some shallow lakes, stratification and destratification can occur several times during the summer. If this occurs the lake is described as polymictic. Thermal stratification also occurs to a lesser extent during the winter, when warmer bottom water becomes separated from ice-forming water at the surface until mixing occurs during spring ice-out. Monthly temperature profiles were established on each lake by measuring water temperature every foot (lakes < 15 feet deep) or every two feet (lakes > 15 feet deep) from the lake surface to the lake bottom. These profiles are important in understanding the distribution of chemical/biological characteristics and because increasing water temperature and the establishment of thermal stratification have a direct impact on dissolved oxygen (DO) concentrations in the water column. If a lake is shallow and easily mixed by wind, the DO concentration is usually consistent throughout the water column. However, shallow lakes are typically dominated by either plants or algae, and increasing water temperatures during the summer speeds up the rates of photosynthesis and decomposition in surface waters. When many of the plants or algae die at the end of the growing season, their decomposition results in heavy oxygen consumption and can lead to an oxygen crash. In deeper, thermally stratified lakes, oxygen production is greatest in the top portion of the lake, where sunlight drives photosynthesis, and oxygen consumption is greatest near the bottom of a lake, where sunken organic matter accumulates and decomposes. The oxygen difference between the top and bottom water layers can be dramatic, with plenty of oxygen near the surface, but practically none near the bottom. The oxygen profiles measured during the water quality study can illustrate if this is occurring. This is important because the absence of oxygen (anoxia) near the lake bottom can have adverse effects in eutrophic lakes resulting in the chemical release of phosphorus from lake sediment and the production of hydrogen sulfide (rotten egg smell) and other gases in the bottom waters. Low oxygen conditions in the upper water of a lake can also be problematic since all aquatic organisms need oxygen to live. Some oxygen may be present in the water, but at too low a concentration to sustain aquatic life. Oxygen is needed by all plants, virtually all algae and for many chemical reactions that are important in lake functioning. Most adult sport-fish such as largemouth bass and bluegill require at least 3 mg/L of DO in the water to survive. However, their offspring require at least 5 mg/L DO as they are more sensitive to DO stress. When DO concentrations drop below 3 mg/L, rough fish such as carp and green sunfish are favored and over time will become the dominant fish species. External pollution in the form of oxygen-demanding organic matter (i.e., sewage, lawn clippings, soil from shoreline erosion, and agricultural runoff) or nutrients that stimulate the growth of excessive organic matter (i.e., algae and plants) can reduce average DO concentrations in the lake by increasing oxygen consumption. This can have a detrimental impact on the fish community, which may be squeezed into a very small volume of water as a result of high temperatures in the epilimnion and low DO levels in the hypolimnion. #### **Nutrients:** ### Phosphorus: For most Lake County lakes, phosphorus is the nutrient that limits plant and algae growth. This means that any addition of phosphorus to a lake will typically result in algae blooms or high plant densities during the summer. The source of phosphorus to a lake can be external or internal (or both). External sources of phosphorus enter a lake through point (i.e., storm pipes and wastewater discharge) and non-point runoff (i.e., overland water flow). This runoff can pick up large amounts of phosphorus from agricultural fields, septic systems or impervious surfaces before it empties into the lake. Internal sources of phosphorus originate within the lake and are typically linked to the lake sediment. In lakes with high oxygen levels (oxic), phosphorus can be released from the sediment through plants or sediment resuspension. Plants take up sediment-bound phosphorus through their roots, releasing it in small amounts to the water column throughout their life cycles, and in large amounts once they die and begin to decompose. Sediment resuspension can occur through biological or mechanical means. Bottom-feeding fish, such as common carp and black bullhead can release phosphorus by stirring up bottom sediment during feeding activities and can add phosphorus to a lake through their fecal matter. Sediment resuspension, and subsequent phosphorus release, can also occur via wind/wave action or through the use of artificial aerators, especially in shallow lakes. In lakes that thermally stratify, internal phosphorus release can occur from the sediment through chemical means. Once oxygen is depleted (anoxia) in the hypolimnion, chemical reactions occur in which phosphorus bound to iron complexes in the sediment becomes soluble and is released into the water column. This phosphorus is trapped in the hypolimnion and is unavailable to algae until fall turnover, and can cause algae blooms once it moves into the sunlit surface water at that time. Accordingly, many of the lakes in Lake County are plagued by dense algae blooms and excessive, exotic plant coverage, which negatively affect DO levels, fish communities and water clarity. Lakes with an average phosphorus concentration greater than 0.05 mg/L are considered nutrient rich. The median near surface total phosphorus (TP) concentration in Lake County lakes from 2000-2008 is 0.065 mg/L and ranged from a non-detectable minimum of <0.010 mg/L on five lakes to a maximum of 3.880 mg/L on Albert Lake. The median anoxic TP concentration in Lake County lakes from 2000-2008 was 0.181 mg/L and ranged from a minimum of 0.012 mg/L in Independence Grove Lake to a maximum of 3.880 mg/L in Taylor Lake. The analysis of phosphorus also included soluble reactive phosphorus (SRP), a dissolved form of phosphorus that is readily available for plant and algae growth. SRP is not discussed in great detail in most of the water quality reports because SRP concentrations vary throughout the season depending on how plants and algae absorb and release it. It gives an indication of how much phosphorus is available for uptake, but, because it does not take all forms of phosphorus into account, it does not indicate how much phosphorus is truly present in the water column. TP is considered a better indicator of a lake's nutrient status because its concentrations remain more stable than soluble reactive phosphorus. However, elevated SRP levels are a strong indicator of nutrient problems in a lake. #### Nitrogen: Nitrogen is also an important nutrient for plant and algae growth. Sources of nitrogen to a lake vary widely, ranging from fertilizer and animal wastes, to human waste from sewage treatment plants or failing septic systems, to groundwater, air and rainfall. As a result, it is very difficult to control or reduce nitrogen inputs to a lake. Different forms of nitrogen are present in a lake under different oxic conditions. NH₄⁺ (ammonium) is released from decomposing organic material under anoxic conditions and accumulates in the hypolimnion of thermally stratified lakes. If NH₄⁺ comes into contact with oxygen, it is immediately converted to NO₂ (nitrite) which is then oxidized to NO₃ (nitrate). Therefore, in a thermally stratified lake, levels of NH₄⁺ would only be elevated in the hypolimnion and levels of NO₃ would only be elevated in the epilimnion. Both NH₄⁺ and NO₃⁻ can be used as a nitrogen source by aquatic plants and algae. Total Kjeldahl nitrogen (TKN) is a measure of organic nitrogen plus ammonium. Adding the concentrations of TKN and nitrate together gives an indication of the amount of total nitrogen present in the water column. If inorganic nitrogen (NO₃⁻, NO₂⁻, NH₄⁺) concentrations exceed 0.3 mg/L in spring, sufficient nitrogen is available to support summer algae blooms. However, low nitrogen levels do not guarantee limited algae growth the way low phosphorus levels do. Nitrogen gas in the air can dissolve in lake water and blue-green algae can "fix" atmospheric nitrogen, converting it into a usable form. Since other types of algae do not have the ability to do this, nuisance blue-green algae blooms are typically associated with lakes that are nitrogen limited (i.e., have low nitrogen levels). The ratio of TKN plus nitrate nitrogen to total phosphorus (TN:TP) can indicate whether plant/algae growth in a lake is limited by nitrogen or phosphorus. Ratios of less than 10:1 suggest a system limited by nitrogen, while lakes with ratios greater than 20:1 are limited by phosphorus. It is important to know if a lake is limited by nitrogen or phosphorus because any addition of the limiting nutrient to the lake will, likely, result in algae blooms or an increase in plant density. #### **Solids:** Although several forms of solids (total solids, total suspended solids, total volatile solids, total dissolved solids) were measured each month by the Lakes Management Staff, total suspended solids (TSS) and total volatile solids (TVS) have the most impact on other variables and on the lake as a whole. TSS are particles of algae or sediment suspended in the water column. High TSS concentrations can result from algae blooms, sediment resuspension, and/or the inflow of turbid water, and are typically
associated with low water clarity and high phosphorus concentrations in many lakes in Lake County. Low water clarity and high phosphorus concentrations, in turn, exacerbate the high TSS problem by leading to reduced plant density (which stabilize lake sediment) and increased occurrence of algae blooms. The median TSS value in epilimnetic waters in Lake County is 8.2 mg/L, ranging from below the 0.1 mg/L detection limit to 165 mg/L in Fairfield Marsh. TVS represents the fraction of total solids that are organic in nature, such as algae cells, tiny pieces of plant material, and/or tiny animals (zooplankton) in the water column. High TVS values indicate that a large portion of the suspended solids may be made up of algae cells. This is important in determining possible sources of phosphorus to a lake. If much of the suspended material in the water column is determined to be resuspended sediment that is releasing phosphorus, this problem would be addressed differently than if the suspended material was made up of algae cells that were releasing phosphorus. The median TVS value was 132.8 mg/L, ranging from 34.0 mg/L in Pulaski Pond to 298.0 mg/L in Fairfield Marsh. Total dissolved solids (TDS) are the amount of dissolved substances, such as salts or minerals, remaining in water after evaporation. These dissolved solids are discussed in further detail in the *Alkalinity* and *Conductivity* sections of this document. TDS concentrations were measured in Lake County lakes prior to 2004, but was discontinued due to the strong correlation of TDS to conductivity and chloride concentrations. #### Water Clarity: Water clarity (transparency) is not a chemical property of lake water, but is often an indicator of a lake's overall water quality. It is affected by a lake's water color, which is a reflection of the amount of total suspended solids and dissolved organic chemicals. Thus, transparency is a measure of particle concentration and is measured with a Secchi disk. Generally, the lower the clarity or Secchi depth, the poorer the water quality. A decrease in Secchi depth during the summer occurs as the result of an increase in suspended solids (algae or sediment) in the water column. Aquatic plants play an important role in the level of water clarity and can, in turn, be negatively affected by low clarity levels. Plants increase clarity by competing with algae for resources and by stabilizing sediments to prevent sediment resuspension. A lake with a healthy plant community will almost always have higher water clarity than a lake without plants. Additionally, if the plants in a lake are removed (through herbicide treatment or the stocking of grass carp), the lake will probably become dominated by algae and Secchi depth will decrease. This makes it very difficult for plants to become re-established due to the lack of available sunlight and the lake will, most likely, remain turbid. Turbidity will be accelerated if the lake is very shallow and/or common carp are present. Shallow lakes are more susceptible to sediment resuspension through wind/wave action and are more likely to experience clarity problems if plants are not present to stabilize bottom sediment. Common Carp are prolific fish that feed on invertebrates in the sediment. Their feeding activities stir up bottom sediment and can dramatically decrease water clarity in shallow lakes. As mentioned above, lakes with low water clarity are, generally, considered to have poor water quality. This is because the causes and effects of low clarity negatively impact the plant and fish communities, as well as the levels of phosphorus in a lake. The detrimental impacts of low Secchi depth to plants has already been discussed. Fish populations will suffer as water clarity decreases due to a lack of food and decreased ability to successfully hunt for prey. Bluegills are planktivorous fish and feed on invertebrates that inhabit aquatic plants. If low clarity results in the disappearance of plants, this food source will disappear too. Largemouth Bass and Northern Pike are piscivorous fish that feed on other fish and hunt by sight. As the water clarity decreases, these fish species find it more difficult to see and ambush prey and may decline in size as a result. This could eventually lead to an imbalance in the fish community. Phosphorus release from resuspended sediment could increase as water clarity and plant density decrease. This would then result in increased algae blooms, further reducing Secchi depth and aggravating all problems just discussed. The average Secchi depth for Lake County lakes is 3.12 feet. From 2000-2008, Fairfield Marsh and Patski Pond had the lowest Secchi depths (0.33 feet) and Bangs Lake had the highest (29.23 feet). As an example of the difference in Secchi depth based on plant coverage, South Churchill Lake, which had no plant coverage and large numbers of Common Carp in 2003 had an average Secchi depth of 0.73 feet (over four times lower than the county average), while Deep Lake, which had a diverse plant community and few carp had an average 2003 Secchi depth of 12.48 feet (almost four times higher than the county average). Another measure of clarity is the use of a light meter. The light meter measures the amount of light at the surface of the lake and the amount of light at each depth in the water column. The amount of attenuation and absorption (decreases) of light by the water column are major factors controlling temperature and potential photosynthesis. Light intensity at the lake surface varies seasonally and with cloud cover, and decreases with depth. The deeper into the water column light penetrates, the deeper potential plant growth. The maximum depth at which algae and plants can grow underwater is usually at the depth where the amount of light available is reduced to 0.5%-1% of the amount of light available at the lake surface. This is called the euphotic (sunlit) zone. A general rule of thumb in Lake County is that the 1% light level is about 1 to 3 times the Secchi disk depth. ### Alkalinity, Conductivity, Chloride, pH: #### Alkalinity: Alkalinity is the measurement of the amount of acid necessary to neutralize carbonate (CO₃⁻) and bicarbonate (HCO₃⁻) ions in the water, and represents the buffering capacity of a body of water. The alkalinity of lake water depends on the types of minerals in the surrounding soils and in the bedrock. It also depends on how often the lake water comes in contact with these minerals. If a lake gets groundwater from aquifers containing limestone minerals such as calcium carbonate (CaCO₃) or dolomite (CaMgCO₃), alkalinity will be high. The median alkalinity in Lake County lakes (162 mg/L) is considered moderately hard according to the hardness classification scale of Brown, Skougstad and Fishman (1970). Because hard water (alkaline) lakes often have watersheds with fertile soils that add nutrients to the water, they usually produce more fish and aquatic plants than soft water lakes. Since the majority of Lake County lakes have a high alkalinity they are able to buffer the adverse effects of acid rain. #### **Conductivity and Chloride:** Conductivity is the inverse measure of the resistance of lake water to an electric flow. This means that the higher the conductivity, the more easily an electric current is able to flow through water. Since electric currents travel along ions in water, the more chemical ions or dissolved salts a body of water contains, the higher the conductivity will be. Accordingly, conductivity has been correlated to total dissolved solids and chloride ions. The amount of dissolved solids or conductivity of a lake is dependent on the lake and watershed geology, the size of the watershed flowing into the lake, the land uses within that watershed, and evaporation and bacterial activity. Many Lake County lakes have elevated conductivity levels in May, but not during any other month. This was because chloride, in the form of road salt, was washing into the lakes with spring rains, increasing conductivity. Most road salt is sodium chloride, calcium chloride, potassium chloride, magnesium chloride or ferrocyanide salts. Beginning in 2004, chloride concentrations are one of the parameters measured during the lake studies. Increased chloride concentrations may have a negative impact on aquatic organisms. Conductivity changes occur seasonally and with depth. For example, in stratified lakes the conductivity normally increases in the hypolimnion as bacterial decomposition converts organic materials to bicarbonate and carbonate ions depending on the pH of the water. These newly created ions increase the conductivity and total dissolved solids. Over the long term, conductivity is a good indicator of potential watershed or lake problems if an increasing trend is noted over a period of years. It is also important to know the conductivity of the water when fishery assessments are conducted, as electroshocking requires a high enough conductivity to properly stun the fish, but not too high as to cause injury or death. #### *pH*: pH is the measurement of hydrogen ion (H⁺) activity in water. The pH of pure water is neutral at 7 and is considered acidic at levels below 7 and basic at levels above 7. Low pH levels of 4-5 are toxic to most aquatic life, while high pH levels (9-10) are not only toxic to aquatic life but may also result in the release of phosphorus from lake sediment. The presence of high plant densities can increase pH levels through photosynthesis, and lakes dominated by a large amount of plants or algae can experience large fluctuations in pH levels from day to night, depending on the rates of photosynthesis and respiration. Few, if any pH problems exist in Lake County lakes. Typically, the flooded gravel mines in the county are more acidic than the glacial lakes as they have less biological activity, but do not usually drop below pH levels of 7. The median near surface pH value of Lake County lakes
is 8.32, with a minimum of 7.06 in Deer Lake and a maximum of 10.28 in Round Lake Marsh North. #### **Eutrophication and Trophic State Index:** The word *eutrophication* comes from a Greek word meaning "well nourished." This also describes the process in which a lake becomes enriched with nutrients. Over time, this is a lake's natural aging process, as it slowly fills in with eroded materials from the surrounding watershed and with decaying plants. If no human impacts disturb the watershed or the lake, natural eutrophication can take thousands of years. However, human activities on a lake or in the watershed accelerate this process by resulting in rapid soil erosion and heavy phosphorus inputs. This accelerated aging process on a lake is referred to as cultural eutrophication. The term trophic state refers to the amount of nutrient enrichment within a lake system. Oligotrophic lakes are usually deep and clear with low nutrient levels, little plant growth and a limited fishery. Mesotrophic lakes are more biologically productive than oligotrophic lakes and have moderate nutrient levels and more plant growth. A lake labeled as eutrophic is high in nutrients and can support high plant densities and large fish populations. Water clarity is typically poorer than oligotrophic or mesotrophic lakes and dissolved oxygen problems may be present. A hypereutrophic lake has excessive nutrients, resulting in nuisance plant or algae growth. These lakes are often pea-soup green, with poor water clarity. Low dissolved oxygen may also be a problem, with fish kills occurring in shallow, hypereutrophic lakes more often than less enriched lakes. As a result, rough fish (tolerant of low dissolved oxygen levels) dominate the fish community of many hypereutrophic lakes. The categorization of a lake into a certain trophic state should not be viewed as a "good to bad" categorization, as most lake residents rate their lake based on desired usage. For example, a fisherman would consider a plant-dominated, clear lake to be desirable, while a water-skier might prefer a turbid lake devoid of plants. Most lakes in Lake County are eutrophic or hypereutrophic. This is primarily as a result of cultural eutrophication. However, due to the fertile soil in this area, many lakes (especially man-made) may have started out under eutrophic conditions and will never attain even mesotrophic conditions, regardless of any amount of money put into the management options. This is not an excuse to allow a lake to continue to deteriorate, but may serve as a reality check for lake owners attempting to create unrealistic conditions in their lakes. The Trophic State Index (TSI) is an index which attaches a score to a lake based on its average total phosphorus concentration, its average Secchi depth (water transparency) and/or its average chlorophyll *a* concentration (which represent algae biomass). It is based on the principle that as phosphorus levels increase, chlorophyll *a* concentrations increase and Secchi depth decreases. The higher the TSI score, the more nutrient-rich a lake is, and once a score is obtained, the lake can then be designated as oligotrophic, mesotrophic or eutrophic. Table 1 (below) illustrates the Trophic State Index using phosphorus concentration and Secchi depth. Table 1. Trophic State Index (TSI). | Trophic State | TSI score | Total Phosphorus (mg/L) | Secchi Depth (feet) | |----------------|-----------|-------------------------|---------------------| | Oligotrophic | <40 | ≤ 0.012 | >13.12 | | Mesotrophic | ≥40<50 | >0.012 \le 0.024 | ≥6.56<13.12 | | Eutrophic | ≥50<70 | >0.024 \le 0.096 | ≥1.64<6.56 | | Hypereutrophic | ≥70 | >0.096 | < 1.64 | | APPENDIX D. WATER QUALITY STATISTICS FOR ALL LAK
COUNTY LAKES. | Œ | |---|---| | | | | | | | | | | | | # 2000 - 2008 Water Quality Parameters, Statistics Summary | | ALKoxic
<=3ft00-2008 | ŕ | | ALKanoxic 2000-2008 | | |---------|---------------------------|----------------------|----------------|---------------------|----------------------| | Average | 167 | | Average | 202 | | | Median | 162 | | Median | 194 | | | Minimum | 65 | IMC | Minimum | 103 | Heron Pond | | Maximum | 330 | Flint Lake | Maximum | 470 | Lake Marie | | STD | 42 | | STD | 50 | | | n = | 802 | | n = | 243 | | | | Condoxic | | | Condanoxic | | | | <=3ft00-2008 | | | 2000-2008 | | | Average | 0.8934 | | Average | 1.0312 | | | Median | 0.8195 | | Median | 0.8695 | | | Minimum | 0.2542 | Broberg Marsh | Minimum | 0.3210 | Lake Kathyrn | | Maximum | 6.8920 | IMC | Maximum | 7.4080 | IMC | | STD | 0.5250 | | STD | 0.7985 | | | n = | 806 | | n = | 243 | | | | NO3-N, | | | NH3- | | | | Nitrate+Nitrite,oxic | | | Nanoxic | | | | <=3ft00-2008 | | | 2000-2008 | | | Average | 0.508 | | Average | 2.192 | | | Median | 0.156 | | Median | 1.630 | | | Minimum | < 0.05 | *ND | Minimum | <0.1 | *ND | | 3.6 | 0.450 | South Churchill | | 10.400 | | | Maximum | 9.670 | Lake | Maximum | 18.400 | Taylor Lake | | STD | 1.073 | | STD | 2.343 | | | n = | 807 | 40() | n = | 243 | 00.1100 | | • | akes had non-detects (74. | 1%) | *ND = 19.8% | Non-detects from | m 28 different lakes | Only compare lakes with detectable concentrations to the statistics above Beginning in 2006, Nitrate+Nitrite was measured. | | pHoxic | | | pHanoxic | | |---------|--------------|-------------------------------------|---------|-----------|-------------------| | | <=3ft00-2008 | | | 2000-2008 | | | Average | 8.32 | | Average | 7.28 | | | Median | 8.32 | | Median | 7.28 | | | Minimum | 7.07 | Bittersweet #13
Round Lake Marsh | Minimum | 6.24 | Banana Pond | | Maximum | 10.28 | North | Maximum | 8.48 | Heron Pond | | STD | 0.44 | | STD | 0.42 | | | n = | 801 | | n = | 243 | | | | All Secchi | | |---------|------------|-----------------------------| | | 2000-2008 | | | Average | 4.51 | | | Median | 3.12 | | | Minimum | 0.33 | Fairfield Marsh, Patski Pon | | Maximum | 24.77 | West Loon Lake | | STD | 3.78 | | **749** n = ## 2000 - 2008 Water Quality Parameters, Statistics Summary (continued) | 2000 - 2000 | Water Quar | ity I arameters, Statis | ones summar y | (commucu) | | |-------------------|---------------------|-------------------------|-----------------|-------------------|-----------------| | | TKNoxic | | | TKNanoxic | | | | <=3ft00-2008 | | | 2000-2008 | | | Average | 1.450 | | Average | 2.973 | | | Median | 1.200 | | Median | 2.330 | | | Minimum | < 0.1 | *ND | Minimum | < 0.5 | *ND | | Maximum | 10.300 | Fairfield Marsh | Maximum | 21.000 | Taylor Lake | | STD | 0.845 | | STD | 2.324 | • | | n = | 802 | | n = | 243 | | | *ND = 3.9% Non | -detects from 15 d | ifferent lakes | *ND = 2.9% No | on-detects from 4 | different lakes | | | TPoxic | | | TPanoxic | | | | <=3ft00-2008 | | | 2000-2008 | | | Average | 0.105 | | Average | 0.316 | | | Median | 0.065 | | Median | 0.181 | | | Minimum | < 0.01 | *ND | Minimum | 0.012 | Independ. Grove | | Maximum | 3.880 | Albert Lake | Maximum | 3.800 | Taylor Lake | | STD | 0.218 | | STD | 0.419 | • | | n = | 808 | | n = | 243 | | | *ND = 2.6% Non | -detects from 9 dif | fferent lakes | | | | | | | | | | | | | TSSall | | | TVSoxic | | | | <=3ft00-2008 | | | <=3ft00-2008 | | | Average | 15.5 | | Average | 132.8 | | | Median | 8.2 | | Median | 129.0 | | | Minimum | <0.1 | *ND | Minimum | 34.0 | Pulaski Pond | | Maximum | 165.0 | Fairfield Marsh | Maximum | 298.0 | Fairfield Marsh | | STD | 20.3 | ranneiu Marsii | STD | 39.8 | ran neu waasn | | n= | 813 | | n = | 757 | | | | -detects from 9 dif | fferent lakes | No 2002 IEPA | | | | 11D = 1.5 /0 110h | detects from 7 di | referr taxes | 140 2002 ILI 71 | Cham Lakes | | | | TDSoxic | | | CLanoxic | | | | <=3ft00-2004 | | | <=3ft00-2008 | | | Average | 470 | | Average | 234 | | | Median | 454 | | Median | 139 | | | | | | 1.10 01011 | | Timber Lake | | Minimum | 150 | Lake Kathryn, White | Minimum | 41 | (N) | | Maximum | 1340 | IMC | Maximum | 2390 | IMC | | STD | 169 | | STD | 364 | | | | 545 | | ·- | 105 | | | Average | 470 | | |-----------------|------------|---------------------| | Median | 454 | | | 3.51 | 4.50 | | | Minimum | 150 | Lake Kathryn, White | | Maximum | 1340 | IMC | | STD | 169 | | | n = | 745 | | | No 2002 IEPA Ch | ain Lakes. | | | | | | | | CLoxic | | |---------|--------------|------------| | | <=3ft00-2008 | | | Average | 210 | | | Median | 166 | | | Minimum | 30 | White Lake | | Maximum | 2760 | IMC | | STD | 233 | | | n = | 470 | | Anoxic conditions are defined <= 1 mg/l D.O. pH Units are equal to the -Log of [H] ion activity Conductivity units are in MilliSiemens/cm Secchi Disk depth units are in feet All others are in mg/L 125 n = Minimums and maximums are based on data from all lakes from 2000-2008 (n=1351). Average, median and STD are based on data from the most recent water quality sampling year for each lake. LCHD Lakes Management Unit ~ 12/1/2008 | APPENDIX E. GRANT PROGRAM OPPORTUNITES. | |---| | | | | | | | APPENDIX E. GRANT PROGRAM OPPORTUNITES. | **Table E1. Potential Grant Opportunities** | | | | Funding Focus | | | | | |--|-------------------|--|---------------------------|---------|---------|----------|---------------| | Grant Program Name | Funding
Source | Contact Information | Water Quality/
Wetland | Habitat | Erosion | Flooding | Cost
Share | | Challenge Grant Program | USFWS | 847-381-2253 or 309-793-5800 | | X | X | | | | Chicago Wilderness Small Grants | CW | 312-346-8166 ext. 30 | | | | | None | | Partners in Conservation (formerly C2000) | IDNR | http://dnr.state.il.us/orep/c2000/ | | X | | | None | | Conservation Reserve Program | NRCS | http://www.nrcs.usda.gov/programs/crp/ | | X | | | Land | | Ecosystems Program | IDNR | http://dnr.state.il.us/orep/c2000/ecosystem/ | | X | |
 None | | Emergency Watershed Protection | NRCS | http://www.nrcs.usda.gov/programs/ewp/ | | | X | X | None | | Five Star Challenge | NFWF | http://www.nfwf.org/AM/Template.cfm | | X | | | None | | Illinois Flood Mitigation Assistance Program | IEMA | http://www.state.il.us/iema/construction.htm | | | | X | None | | Great Lakes Basin Program | GLBP | http://www.glc.org/basin/stateproj.html?st=il | X | | X | | None | | Illinois Clean Energy Community Foundation | ICECF | http://www.illinoiscleanenergy.org/ | | X | | | | | Illinois Clean Lakes Program | IEPA | http://www.epa.state.il.us/water/financial-assistance/index.html | | | | | None | | Lake Education Assistance Program (LEAP) | IEPA | http://www.epa.state.il.us/water/conservation-
2000/leap/index.html | X | | | | \$500 | CW = Chicago Wilderness ICECF = Illinois Clean Energy Community Foundation IEMA = Illinois Emergency Management Agency IEPA = Illinois Environmental Protection Agency IDNR = Illinois Department of Natural Resources IDOA = Illinois Department of Agriculture LCSMC = Lake County Stormwater Management Commission LCSWCD = Lake County Soil and Water Conservation District NFWF = National Fish and Wildlife Foundation NRCS = Natural Resources Conservation Service USACE = United States Army Corps of Engineers USFWS = United States Fish and Wildlife Service **Table E1. Continued** | | | | Funding Focus | | | | | |--|-------------------|--|---------------------------|---------|---------|----------|---------------| | Grant Program Name | Funding
Source | Contact Information | Water Quality/
Wetland | Habitat | Erosion | Flooding | Cost
Share | | Northeast Illinois Wetland Conservation Account | USFWF | 847-381-2253 | X | | | | | | Partners for Fish and Wildlife | USFWS | http://ecos.fws.gov/partners/ | | X | | | > 50% | | River Network's Watershed Assistance Grants
Program | River Network | http://www.rivernetwork.org | X | X | X | | na | | Section 206: Aquatic Ecosystems Restoration | USACE | 312-353-6400, 309-794-5590 or 314-331-8404 | | X | | | 35% | | Section 319: Non-Point Source Management
Program | IEPA | http://www.epa.state.il.us/water/financial-assistance/nonpoint.html | X | X | | | >40% | | Section 1135: Project Modifications for the Improvement of the Environment | USACE | 312-353-6400, 309-794-5590 or 314-331-8404 | | X | | | 25% | | Stream Cleanup And Lakeshore Enhancement (SCALE) | IEPA | http://www.epa.state.il.us/water/watershed/scale.html | X | X | | | None | | Streambank Stabilization & Restoration (SSRP) | | http://www.agr.state.il.us/Environment/conserv/ or call LCSWCD at (847) 223-1056 | | X | X | | 25% | | Watershed Management Boards | LCSMC | http://www.co.lake.il.us/smc/projects/wmb/default.asp | X | | X | X | 50% | | Wetlands Reserve Program | NRCS | http://www.nrcs.usda.gov/programs/wrp/ | X | X | | | Land | | Wildlife Habitat Incentive Program | NRCS | http://www.nrcs.usda.gov/programs/whip/ | | X | | | Land | CW = Chicago Wilderness ICECF = Illinois Clean Energy Community Foundation IEMA = Illinois Emergency Management Agency IEPA = Illinois Environmental Protection Agency IDNR = Illinois Department of Natural Resources IDOA = Illinois Department of Agriculture LCSMC = Lake County Stormwater Management Commission LCSWCD = Lake County Soil and Water Conservation District NFWF = National Fish and Wildlife Foundation NRCS = Natural Resources Conservation Service USACE = United States Army Corps of Engineers USFWS = United States Fish and Wildlife Service